TU Darmstadt / ULB / TUbiblio

Detection of typical bipartite entanglement by local generalized measurements

Schumacher, Maximilian ; Alber, Gernot (2023)
Detection of typical bipartite entanglement by local generalized measurements.
In: Physical Review A, 108 (4)
doi: 10.1103/PhysRevA.108.042424
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Motivated by the need for efficient local entanglement detection for applications in quantum information processing, sufficient conditions for arbitrary-dimensional local bipartite entanglement detection based on correlation matrices and joint probability distributions are investigated. In particular, their dependence on the nature of different classes of local measurements is explored for generalized measurements based on informationally complete (N,M) positive-operator-valued measures (POVMs) [Siudzinska, Phys. Rev. A 105, 042209 (2022)]. It is shown that symmetry properties of (N,M) POVMs necessarily imply that these sufficient conditions for bipartite entanglement detection exhibit characteristic scaling properties relating equivalent sufficient conditions. Based on these general scaling properties, the efficiency of different classes of local quantum measurement detecting typical bipartite entanglement is investigated quantitatively. For this purpose Euclidean volume ratios between locally detectable bipartite entangled states and all bipartite quantum states are determined numerically with the help of a Monte Carlo algorithm. Our results demonstrate that physically realizable (N,M) POVMs are sufficient for optimal local entanglement detection. In particular, this implies that for this purpose the construction of optimal (N,M) POVMs is not necessary. As questions concerning the existence and construction of optimal (N,M) POVMs are still largely open, this may offer interesting perspectives for practical applications in quantum information processing.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Schumacher, Maximilian ; Alber, Gernot
Art des Eintrags: Bibliographie
Titel: Detection of typical bipartite entanglement by local generalized measurements
Sprache: Englisch
Publikationsjahr: 25 Oktober 2023
Verlag: APS Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review A
Jahrgang/Volume einer Zeitschrift: 108
(Heft-)Nummer: 4
DOI: 10.1103/PhysRevA.108.042424
URL / URN: https://link.aps.org/doi/10.1103/PhysRevA.108.042424
Kurzbeschreibung (Abstract):

Motivated by the need for efficient local entanglement detection for applications in quantum information processing, sufficient conditions for arbitrary-dimensional local bipartite entanglement detection based on correlation matrices and joint probability distributions are investigated. In particular, their dependence on the nature of different classes of local measurements is explored for generalized measurements based on informationally complete (N,M) positive-operator-valued measures (POVMs) [Siudzinska, Phys. Rev. A 105, 042209 (2022)]. It is shown that symmetry properties of (N,M) POVMs necessarily imply that these sufficient conditions for bipartite entanglement detection exhibit characteristic scaling properties relating equivalent sufficient conditions. Based on these general scaling properties, the efficiency of different classes of local quantum measurement detecting typical bipartite entanglement is investigated quantitatively. For this purpose Euclidean volume ratios between locally detectable bipartite entangled states and all bipartite quantum states are determined numerically with the help of a Monte Carlo algorithm. Our results demonstrate that physically realizable (N,M) POVMs are sufficient for optimal local entanglement detection. In particular, this implies that for this purpose the construction of optimal (N,M) POVMs is not necessary. As questions concerning the existence and construction of optimal (N,M) POVMs are still largely open, this may offer interesting perspectives for practical applications in quantum information processing.

Zusätzliche Informationen:

Art.No.: 042424

Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik
Hinterlegungsdatum: 21 Nov 2023 14:21
Letzte Änderung: 22 Jan 2024 13:50
PPN: 514906928
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen