TU Darmstadt / ULB / TUbiblio

Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest

Hoenle, Philipp O. ; Staab, Michael ; Donoso, David A. ; Argoti, Adriana ; Blüthgen, Nico (2023)
Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest.
In: Journal of Animal Ecology, 2023, 92 (7)
doi: 10.26083/tuprints-00024303
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Microhabitat differentiation of species communities such as vertical stratification in tropical forests contributes to species coexistence and thus biodiversity. However, little is known about how the extent of stratification changes during forest recovery and influences community reassembly. Environmental filtering determines community reassembly in time (succession) and in space (stratification), hence functional and phylogenetic composition of species communities are highly dynamic. It is poorly understood if and how these two concurrent filters—forest recovery and stratification—interact.

In a tropical forest chronosequence in Ecuador spanning 34 years of natural recovery, we investigated the recovery trajectory of ant communities in three overlapping strata (ground, leaf litter, lower tree trunk) by quantifying 13 traits, as well as the functional and phylogenetic diversity of the ants. We expected that functional and phylogenetic diversity would increase with recovery time and that each ant community within each stratum would show a distinct functional reassembly. We predicted that traits related to ant diet would show divergent trajectories reflecting an increase in niche differentiation with recovery time. On the other hand, traits related to the abiotic environment were predicted to show convergent trajectories due to a more similar microclimate across strata with increasing recovery age.

Most of the functional traits and the phylogenetic diversity of the ants were clearly stratified, confirming previous findings. However, neither functional nor phylogenetic diversity increased with recovery time. Community‐weighted trait means had complex relationships to recovery time and the majority were shaped by a statistical interaction between recovery time and stratum, confirming our expectations. However, most trait trajectories converged among strata with increasing recovery time regardless of whether they were related to ant diet or environmental conditions.

We confirm the hypothesized interaction among environmental filters during the functional reassembly in tropical forests. Communities in individual strata respond differently to recovery, and possible filter mechanisms likely arise from both abiotic (e.g. microclimate) and biotic (e.g. diet) conditions. Since vertical stratification is prevalent across animal and plant taxa, our results highlight the importance of stratum‐specific analysis in dynamic ecosystems and may generalize beyond ants.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Hoenle, Philipp O. ; Staab, Michael ; Donoso, David A. ; Argoti, Adriana ; Blüthgen, Nico
Art des Eintrags: Zweitveröffentlichung
Titel: Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest
Sprache: Englisch
Publikationsjahr: 10 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Oxford
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Animal Ecology
Jahrgang/Volume einer Zeitschrift: 92
(Heft-)Nummer: 7
DOI: 10.26083/tuprints-00024303
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24303
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Microhabitat differentiation of species communities such as vertical stratification in tropical forests contributes to species coexistence and thus biodiversity. However, little is known about how the extent of stratification changes during forest recovery and influences community reassembly. Environmental filtering determines community reassembly in time (succession) and in space (stratification), hence functional and phylogenetic composition of species communities are highly dynamic. It is poorly understood if and how these two concurrent filters—forest recovery and stratification—interact.

In a tropical forest chronosequence in Ecuador spanning 34 years of natural recovery, we investigated the recovery trajectory of ant communities in three overlapping strata (ground, leaf litter, lower tree trunk) by quantifying 13 traits, as well as the functional and phylogenetic diversity of the ants. We expected that functional and phylogenetic diversity would increase with recovery time and that each ant community within each stratum would show a distinct functional reassembly. We predicted that traits related to ant diet would show divergent trajectories reflecting an increase in niche differentiation with recovery time. On the other hand, traits related to the abiotic environment were predicted to show convergent trajectories due to a more similar microclimate across strata with increasing recovery age.

Most of the functional traits and the phylogenetic diversity of the ants were clearly stratified, confirming previous findings. However, neither functional nor phylogenetic diversity increased with recovery time. Community‐weighted trait means had complex relationships to recovery time and the majority were shaped by a statistical interaction between recovery time and stratum, confirming our expectations. However, most trait trajectories converged among strata with increasing recovery time regardless of whether they were related to ant diet or environmental conditions.

We confirm the hypothesized interaction among environmental filters during the functional reassembly in tropical forests. Communities in individual strata respond differently to recovery, and possible filter mechanisms likely arise from both abiotic (e.g. microclimate) and biotic (e.g. diet) conditions. Since vertical stratification is prevalent across animal and plant taxa, our results highlight the importance of stratum‐specific analysis in dynamic ecosystems and may generalize beyond ants.

Freie Schlagworte: Chocó, chronosequence, community weighted means, Ecuador, environmental filters, forest regeneration, functional traits, phylogeny
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-243032
Zusätzliche Informationen:

Special Feature: Active Remote Sensing for Ecology and Ecosystem Conservation

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
500 Naturwissenschaften und Mathematik > 590 Tiere (Zoologie)
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Ecological Networks
Hinterlegungsdatum: 10 Nov 2023 15:17
Letzte Änderung: 13 Nov 2023 06:15
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen