TU Darmstadt / ULB / TUbiblio

Dislocation‐tuned electrical conductivity in solid electrolytes (9YSZ): A micro‐mechanical approach

Muhammad, Qaisar Khushi ; Valderrama, Marcela ; Yue, Mengkun ; Opitz, Alexander Karl ; Taibl, Stefanie ; Siebenhofer, Matthäus ; Bruder, Enrico ; Fleig, Jürgen ; Fang, Xufei ; Frömling, Till (2023)
Dislocation‐tuned electrical conductivity in solid electrolytes (9YSZ): A micro‐mechanical approach.
In: Journal of the American Ceramic Society, 2023, 106 (11)
doi: 10.26083/tuprints-00024672
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Tailoring the electrical conductivity of functional ceramics by introducing dislocations is a comparatively recent research focus, and its merits were demonstrated through mechanical means. Especially bulk deformation at high temperatures is suggested to be a promising method to introduce a high dislocation density. So far, however, controlling dislocation generation and their annihilation remains difficult. Although deforming ceramics generate dislocations on multiple length scales, dislocation annihilation at the same time appears to be the bottleneck to use the full potential of dislocations‐tailoring the electrical conductivity. Here, we demonstrate the control over these aspects using a micromechanical approach on yttria‐stabilized zirconia ‐ YSZ. Targeted indentation well below the dislocation annihilation temperature resulted in extremely dense dislocation networks, visualized by chemical etching and electron channeling contrast imaging. Microcontact‐impedance measurements helped evaluate the electrical response of operating individual slip systems. A significant conductivity enhancement is revealed in dislocation‐rich regions compared to pristine ones in fully stabilized YSZ. This enhancement is mainly attributed to oxygen ionic conductivity. Thus, the possibility of increasing the conductivity is illustrated and provides a prospect to transfer the merits of dislocation‐tuned electrical conductivity to solid oxygen electrolytes.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Muhammad, Qaisar Khushi ; Valderrama, Marcela ; Yue, Mengkun ; Opitz, Alexander Karl ; Taibl, Stefanie ; Siebenhofer, Matthäus ; Bruder, Enrico ; Fleig, Jürgen ; Fang, Xufei ; Frömling, Till
Art des Eintrags: Zweitveröffentlichung
Titel: Dislocation‐tuned electrical conductivity in solid electrolytes (9YSZ): A micro‐mechanical approach
Sprache: Englisch
Publikationsjahr: 7 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Oxford
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 106
(Heft-)Nummer: 11
DOI: 10.26083/tuprints-00024672
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24672
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Tailoring the electrical conductivity of functional ceramics by introducing dislocations is a comparatively recent research focus, and its merits were demonstrated through mechanical means. Especially bulk deformation at high temperatures is suggested to be a promising method to introduce a high dislocation density. So far, however, controlling dislocation generation and their annihilation remains difficult. Although deforming ceramics generate dislocations on multiple length scales, dislocation annihilation at the same time appears to be the bottleneck to use the full potential of dislocations‐tailoring the electrical conductivity. Here, we demonstrate the control over these aspects using a micromechanical approach on yttria‐stabilized zirconia ‐ YSZ. Targeted indentation well below the dislocation annihilation temperature resulted in extremely dense dislocation networks, visualized by chemical etching and electron channeling contrast imaging. Microcontact‐impedance measurements helped evaluate the electrical response of operating individual slip systems. A significant conductivity enhancement is revealed in dislocation‐rich regions compared to pristine ones in fully stabilized YSZ. This enhancement is mainly attributed to oxygen ionic conductivity. Thus, the possibility of increasing the conductivity is illustrated and provides a prospect to transfer the merits of dislocation‐tuned electrical conductivity to solid oxygen electrolytes.

Freie Schlagworte: dislocations, mechanical deformation, nanoindentation, oxygen-ionic conductivity, SOEC, SOFC, solid electrolytes, yttria‐stabilized zirconia
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-246723
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 07 Nov 2023 12:41
Letzte Änderung: 08 Nov 2023 06:09
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen