TU Darmstadt / ULB / TUbiblio

Giant Anomalous Hall and Nernst Conductivities in Magnetic All‐d Metal Heusler Alloys

Tanzim, Mohammad Farhan ; Fortunato, Nuno ; Samathrakis, Ilias ; Xie, Ruiwen ; Opahle, Ingo ; Gutfleisch, Oliver ; Zhang, Hongbin (2023)
Giant Anomalous Hall and Nernst Conductivities in Magnetic All‐d Metal Heusler Alloys.
In: Advanced Functional Materials, 2023, 33 (28)
doi: 10.26083/tuprints-00024680
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

All‐d Heuslers are a category of novel compounds combining versatile functionalities such as caloric responses and spintronics with enhanced mechanical properties. Despite the promising transport properties (anomalous Hall (AHC) and anomalous Nernst (ANC) conductivities) shown in the conventional Co₂XY Heuslers with p‐d hybridization, the all‐d Heuslers with only d‐d hybridization open a new horizon to search for new candidates with outstanding transport properties. In this work, the AHC and ANC are evaluated for thermodynamically stable ferro/ferri‐magnetic all‐d‐metal regular Heusler compounds based on high‐throughput first‐principles calculations. It is observed that quite a few materials exhibit giant AHCs and ANCs, such as cubic Re₂TaMn with an AHC of 2011 S cm⁻¹, and tetragonal Pt₂CrRh with an AHC of 1966 S cm⁻¹ and an ANC of 7.50 A m⁻¹K⁻¹. Comprehensive analysis on the electronic structure reveals that the high AHC can be attributed to the occurrence of the Weyl nodes or gapped nodal lines in the neighborhood of the Fermi level. The correlations between such transport properties and the number of valence electrons are also thoroughly investigated, which provides a practical guidance to tailor AHC and ANC via chemical doping for transverse thermoelectric applications.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Tanzim, Mohammad Farhan ; Fortunato, Nuno ; Samathrakis, Ilias ; Xie, Ruiwen ; Opahle, Ingo ; Gutfleisch, Oliver ; Zhang, Hongbin
Art des Eintrags: Zweitveröffentlichung
Titel: Giant Anomalous Hall and Nernst Conductivities in Magnetic All‐d Metal Heusler Alloys
Sprache: Englisch
Publikationsjahr: 7 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 11 Juli 2023
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Functional Materials
Jahrgang/Volume einer Zeitschrift: 33
(Heft-)Nummer: 28
Kollation: 10 Seiten
DOI: 10.26083/tuprints-00024680
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24680
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

All‐d Heuslers are a category of novel compounds combining versatile functionalities such as caloric responses and spintronics with enhanced mechanical properties. Despite the promising transport properties (anomalous Hall (AHC) and anomalous Nernst (ANC) conductivities) shown in the conventional Co₂XY Heuslers with p‐d hybridization, the all‐d Heuslers with only d‐d hybridization open a new horizon to search for new candidates with outstanding transport properties. In this work, the AHC and ANC are evaluated for thermodynamically stable ferro/ferri‐magnetic all‐d‐metal regular Heusler compounds based on high‐throughput first‐principles calculations. It is observed that quite a few materials exhibit giant AHCs and ANCs, such as cubic Re₂TaMn with an AHC of 2011 S cm⁻¹, and tetragonal Pt₂CrRh with an AHC of 1966 S cm⁻¹ and an ANC of 7.50 A m⁻¹K⁻¹. Comprehensive analysis on the electronic structure reveals that the high AHC can be attributed to the occurrence of the Weyl nodes or gapped nodal lines in the neighborhood of the Fermi level. The correlations between such transport properties and the number of valence electrons are also thoroughly investigated, which provides a practical guidance to tailor AHC and ANC via chemical doping for transverse thermoelectric applications.

Freie Schlagworte: all‐ d heusler, high‐throughput, transport properties
ID-Nummer: 2214967
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-246804
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 07 Nov 2023 12:28
Letzte Änderung: 08 Nov 2023 06:05
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen