TU Darmstadt / ULB / TUbiblio

Seminar Paper: Optimized Grouping in Educational Activities

März, Lars Steffen ; Herde, Thomas (2023)
Seminar Paper: Optimized Grouping in Educational Activities.
Universitäts- und Landesbibliothek Darmstadt
Master-Seminar: Optimized grouping in educational activities. Technische Universität Darmstadt (01.03.2023-31.03.2023)
doi: 10.26083/tuprints-00024768
Studienarbeit, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Grouping people to foster synergies has been an active field of research for decades, both in social sciences and management science. But also from the viewpoint of mathematical modelling and optimization, it is a challenging task due to its combinatorial and multi-objective nature. This paper focuses on the educational context by specifically considering group and topic assignments rooted in social preferences, topic interests, prior knowledge and other properties to an unprecedented extent. It provides highly customizable MIPs to model and Java code to solve such problems relying on the Gurobi library. Initial numerical tests, utilizing heuristically parameterized and randomly generated artificial user data, show computational tractability and provide approximately Pareto-efficient solutions to the user for moderate instance sizes of up to 30 students and 15 topics. Finally, the goal is to supply the chair for Management Science and Operations Research at TU Darmstadt with the developed software for practical application and evaluation.

Typ des Eintrags: Studienarbeit
Erschienen: 2023
Autor(en): März, Lars Steffen ; Herde, Thomas
Art des Eintrags: Erstveröffentlichung
Titel: Seminar Paper: Optimized Grouping in Educational Activities
Sprache: Englisch
Referenten: Weidinger, Prof. Dr. Felix ; Wildt, M.Sc. Constantin
Publikationsjahr: 6 November 2023
Ort: Darmstadt
Veranstaltungstitel: Master-Seminar: Optimized grouping in educational activities
Veranstaltungsort: Technische Universität Darmstadt
Veranstaltungsdatum: 01.03.2023-31.03.2023
DOI: 10.26083/tuprints-00024768
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24768
Zugehörige Links:
Kurzbeschreibung (Abstract):

Grouping people to foster synergies has been an active field of research for decades, both in social sciences and management science. But also from the viewpoint of mathematical modelling and optimization, it is a challenging task due to its combinatorial and multi-objective nature. This paper focuses on the educational context by specifically considering group and topic assignments rooted in social preferences, topic interests, prior knowledge and other properties to an unprecedented extent. It provides highly customizable MIPs to model and Java code to solve such problems relying on the Gurobi library. Initial numerical tests, utilizing heuristically parameterized and randomly generated artificial user data, show computational tractability and provide approximately Pareto-efficient solutions to the user for moderate instance sizes of up to 30 students and 15 topics. Finally, the goal is to supply the chair for Management Science and Operations Research at TU Darmstadt with the developed software for practical application and evaluation.

Freie Schlagworte: Gurobi, MIP, modelling, operations research, grouping, optimization, efficient frontier, pareto optimality, multiobjective programming, multicriteria programming, management science, mixed-integer program, linear program, LP, binary programme, mathematics
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-247681
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 300 Sozialwissenschaften > 330 Wirtschaft
500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 650 Management
Fachbereich(e)/-gebiet(e): 01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Management Science / Operations Research
01 Fachbereich Rechts- und Wirtschaftswissenschaften
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete
Hinterlegungsdatum: 06 Nov 2023 10:55
Letzte Änderung: 07 Nov 2023 06:11
PPN:
Referenten: Weidinger, Prof. Dr. Felix ; Wildt, M.Sc. Constantin
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen