März, Lars Steffen ; Herde, Thomas (2023)
Seminar Paper: Optimized Grouping in Educational Activities.
Universitäts- und Landesbibliothek Darmstadt
Master-Seminar: Optimized grouping in educational activities. Technische Universität Darmstadt (01.03.2023-31.03.2023)
doi: 10.26083/tuprints-00024768
Studienarbeit, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
Grouping people to foster synergies has been an active field of research for decades, both in social sciences and management science. But also from the viewpoint of mathematical modelling and optimization, it is a challenging task due to its combinatorial and multi-objective nature. This paper focuses on the educational context by specifically considering group and topic assignments rooted in social preferences, topic interests, prior knowledge and other properties to an unprecedented extent. It provides highly customizable MIPs to model and Java code to solve such problems relying on the Gurobi library. Initial numerical tests, utilizing heuristically parameterized and randomly generated artificial user data, show computational tractability and provide approximately Pareto-efficient solutions to the user for moderate instance sizes of up to 30 students and 15 topics. Finally, the goal is to supply the chair for Management Science and Operations Research at TU Darmstadt with the developed software for practical application and evaluation.
Typ des Eintrags: | Studienarbeit |
---|---|
Erschienen: | 2023 |
Autor(en): | März, Lars Steffen ; Herde, Thomas |
Art des Eintrags: | Erstveröffentlichung |
Titel: | Seminar Paper: Optimized Grouping in Educational Activities |
Sprache: | Englisch |
Referenten: | Weidinger, Prof. Dr. Felix ; Wildt, M.Sc. Constantin |
Publikationsjahr: | 6 November 2023 |
Ort: | Darmstadt |
Veranstaltungstitel: | Master-Seminar: Optimized grouping in educational activities |
Veranstaltungsort: | Technische Universität Darmstadt |
Veranstaltungsdatum: | 01.03.2023-31.03.2023 |
DOI: | 10.26083/tuprints-00024768 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/24768 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Grouping people to foster synergies has been an active field of research for decades, both in social sciences and management science. But also from the viewpoint of mathematical modelling and optimization, it is a challenging task due to its combinatorial and multi-objective nature. This paper focuses on the educational context by specifically considering group and topic assignments rooted in social preferences, topic interests, prior knowledge and other properties to an unprecedented extent. It provides highly customizable MIPs to model and Java code to solve such problems relying on the Gurobi library. Initial numerical tests, utilizing heuristically parameterized and randomly generated artificial user data, show computational tractability and provide approximately Pareto-efficient solutions to the user for moderate instance sizes of up to 30 students and 15 topics. Finally, the goal is to supply the chair for Management Science and Operations Research at TU Darmstadt with the developed software for practical application and evaluation. |
Freie Schlagworte: | Gurobi, MIP, modelling, operations research, grouping, optimization, efficient frontier, pareto optimality, multiobjective programming, multicriteria programming, management science, mixed-integer program, linear program, LP, binary programme, mathematics |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-247681 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 300 Sozialwissenschaften > 330 Wirtschaft 500 Naturwissenschaften und Mathematik > 510 Mathematik 600 Technik, Medizin, angewandte Wissenschaften > 650 Management |
Fachbereich(e)/-gebiet(e): | 01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Management Science / Operations Research 01 Fachbereich Rechts- und Wirtschaftswissenschaften 01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete |
Hinterlegungsdatum: | 06 Nov 2023 10:55 |
Letzte Änderung: | 07 Nov 2023 06:11 |
PPN: | |
Referenten: | Weidinger, Prof. Dr. Felix ; Wildt, M.Sc. Constantin |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |