TU Darmstadt / ULB / TUbiblio

Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests

Müller, Jörg ; Mitesser, Oliver ; Schaefer, H. Martin ; Seibold, Sebastian ; Busse, Annika ; Kriegel, Peter ; Rabl, Dominik ; Gelis, Rudy ; Arteaga, Alejandro ; Freile, Juan ; Leite, Gabriel Augusto ; Melo, Tomaz Nascimento de ; LeBien, Jack ; Campos-Cerqueira, Marconi ; Blüthgen, Nico ; Tremlett, Constance J. ; Böttger, Dennis ; Feldhaar, Heike ; Grella, Nina ; Falconí-López, Ana ; Donoso, David A. ; Moriniere, Jerome ; Buřivalová, Zuzana (2023)
Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests.
In: Nature Communications, 14 (1)
doi: 10.1038/s41467-023-41693-w
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Müller, Jörg ; Mitesser, Oliver ; Schaefer, H. Martin ; Seibold, Sebastian ; Busse, Annika ; Kriegel, Peter ; Rabl, Dominik ; Gelis, Rudy ; Arteaga, Alejandro ; Freile, Juan ; Leite, Gabriel Augusto ; Melo, Tomaz Nascimento de ; LeBien, Jack ; Campos-Cerqueira, Marconi ; Blüthgen, Nico ; Tremlett, Constance J. ; Böttger, Dennis ; Feldhaar, Heike ; Grella, Nina ; Falconí-López, Ana ; Donoso, David A. ; Moriniere, Jerome ; Buřivalová, Zuzana
Art des Eintrags: Bibliographie
Titel: Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests
Sprache: Englisch
Publikationsjahr: 17 Oktober 2023
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Communications
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 1
DOI: 10.1038/s41467-023-41693-w
Kurzbeschreibung (Abstract):

Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.

ID-Nummer: pmid:37848442
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Ecological Networks
Hinterlegungsdatum: 24 Okt 2023 05:38
Letzte Änderung: 07 Nov 2023 08:09
PPN: 512652910
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen