TU Darmstadt / ULB / TUbiblio

The Effect of Unsteady Inlet Boundary Conditions on the Aero-Thermal Behavior of High-Pressure Turbine Vanes: A Numerical Study Using Scale-Resolving Simulations

Gründler, Jonathan ; Lehmann, Knut ; Schiffer, Heinz-Peter (2023)
The Effect of Unsteady Inlet Boundary Conditions on the Aero-Thermal Behavior of High-Pressure Turbine Vanes: A Numerical Study Using Scale-Resolving Simulations.
ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Boston, Massachusetts, USA (26.06.2023 - 30.06.2023)
doi: 10.1115/GT2023-100884
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper presents the application of a novel method to prescribe unsteady boundary conditions to transient, scale-resolving Computational Fluid Dynamics simulations of the high-pressure turbine in modern jet engines. The methodology is based on the compression of the interface data at the Combustor Turbine Interface, using Proper Orthogonal Decomposition and Fourier Series (PODFS). Doing so can reduce the stored data at the interface drastically. The capability of the PODFS method to produce realistic inlet boundary conditions was demonstrated in previous work. Here, the method is applied to a turbine case. The outlet data of a combustor simulation is used to create the PODFS boundary conditions for a scale-resolving simulation of a simplified first Nozzle Guide Vane of the high-pressure turbine. This simulation is compared with simulations with steady-state boundary conditions to show the effect of unsteadiness in the inlet boundary condition on the aerodynamic and thermal behavior of the turbine. While the aerodynamics show minor sensitivity against the way of applying the inlet boundary conditions, the thermal behavior of the vanes is strongly affected by the modeling of combustor unsteadiness.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Gründler, Jonathan ; Lehmann, Knut ; Schiffer, Heinz-Peter
Art des Eintrags: Bibliographie
Titel: The Effect of Unsteady Inlet Boundary Conditions on the Aero-Thermal Behavior of High-Pressure Turbine Vanes: A Numerical Study Using Scale-Resolving Simulations
Sprache: Englisch
Publikationsjahr: Juni 2023
Ort: New York
Verlag: ASME
Buchtitel: ASME Turbo Expo 2023. Volume 13D: Turbomachinery — Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification; Radial Turbomachinery Aerodynamics; Unsteady Flows in Turbomachinery
Kollation: 13 Seiten
Veranstaltungstitel: ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
Veranstaltungsort: Boston, Massachusetts, USA
Veranstaltungsdatum: 26.06.2023 - 30.06.2023
DOI: 10.1115/GT2023-100884
URL / URN: https://asmedigitalcollection.asme.org/GT/proceedings/GT2023...
Kurzbeschreibung (Abstract):

This paper presents the application of a novel method to prescribe unsteady boundary conditions to transient, scale-resolving Computational Fluid Dynamics simulations of the high-pressure turbine in modern jet engines. The methodology is based on the compression of the interface data at the Combustor Turbine Interface, using Proper Orthogonal Decomposition and Fourier Series (PODFS). Doing so can reduce the stored data at the interface drastically. The capability of the PODFS method to produce realistic inlet boundary conditions was demonstrated in previous work. Here, the method is applied to a turbine case. The outlet data of a combustor simulation is used to create the PODFS boundary conditions for a scale-resolving simulation of a simplified first Nozzle Guide Vane of the high-pressure turbine. This simulation is compared with simulations with steady-state boundary conditions to show the effect of unsteadiness in the inlet boundary condition on the aerodynamic and thermal behavior of the turbine. While the aerodynamics show minor sensitivity against the way of applying the inlet boundary conditions, the thermal behavior of the vanes is strongly affected by the modeling of combustor unsteadiness.

Zusätzliche Informationen:

Paper No: GT2023-100884, V13DT36A00

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR)
16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) > Numerische Simulation
16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) > Turbine
16 Fachbereich Maschinenbau > Rolls-Royce University Technology Center Combustor Turbine Interaction (UTC)
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 19 Okt 2023 11:52
Letzte Änderung: 19 Okt 2023 12:06
PPN: 51258785X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen