Gründler, Jonathan ; Lehmann, Knut ; Schiffer, Heinz-Peter (2023)
The Effect of Unsteady Inlet Boundary Conditions on the Aero-Thermal Behavior of High-Pressure Turbine Vanes: A Numerical Study Using Scale-Resolving Simulations.
ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Boston, Massachusetts, USA (26.06.2023-30.06.2023)
doi: 10.1115/GT2023-100884
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
This paper presents the application of a novel method to prescribe unsteady boundary conditions to transient, scale-resolving Computational Fluid Dynamics simulations of the high-pressure turbine in modern jet engines. The methodology is based on the compression of the interface data at the Combustor Turbine Interface, using Proper Orthogonal Decomposition and Fourier Series (PODFS). Doing so can reduce the stored data at the interface drastically. The capability of the PODFS method to produce realistic inlet boundary conditions was demonstrated in previous work. Here, the method is applied to a turbine case. The outlet data of a combustor simulation is used to create the PODFS boundary conditions for a scale-resolving simulation of a simplified first Nozzle Guide Vane of the high-pressure turbine. This simulation is compared with simulations with steady-state boundary conditions to show the effect of unsteadiness in the inlet boundary condition on the aerodynamic and thermal behavior of the turbine. While the aerodynamics show minor sensitivity against the way of applying the inlet boundary conditions, the thermal behavior of the vanes is strongly affected by the modeling of combustor unsteadiness.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Gründler, Jonathan ; Lehmann, Knut ; Schiffer, Heinz-Peter |
Art des Eintrags: | Bibliographie |
Titel: | The Effect of Unsteady Inlet Boundary Conditions on the Aero-Thermal Behavior of High-Pressure Turbine Vanes: A Numerical Study Using Scale-Resolving Simulations |
Sprache: | Englisch |
Publikationsjahr: | Juni 2023 |
Ort: | New York |
Verlag: | ASME |
Buchtitel: | ASME Turbo Expo 2023. Volume 13D: Turbomachinery — Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification; Radial Turbomachinery Aerodynamics; Unsteady Flows in Turbomachinery |
Kollation: | 13 Seiten |
Veranstaltungstitel: | ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition |
Veranstaltungsort: | Boston, Massachusetts, USA |
Veranstaltungsdatum: | 26.06.2023-30.06.2023 |
DOI: | 10.1115/GT2023-100884 |
URL / URN: | https://asmedigitalcollection.asme.org/GT/proceedings/GT2023... |
Kurzbeschreibung (Abstract): | This paper presents the application of a novel method to prescribe unsteady boundary conditions to transient, scale-resolving Computational Fluid Dynamics simulations of the high-pressure turbine in modern jet engines. The methodology is based on the compression of the interface data at the Combustor Turbine Interface, using Proper Orthogonal Decomposition and Fourier Series (PODFS). Doing so can reduce the stored data at the interface drastically. The capability of the PODFS method to produce realistic inlet boundary conditions was demonstrated in previous work. Here, the method is applied to a turbine case. The outlet data of a combustor simulation is used to create the PODFS boundary conditions for a scale-resolving simulation of a simplified first Nozzle Guide Vane of the high-pressure turbine. This simulation is compared with simulations with steady-state boundary conditions to show the effect of unsteadiness in the inlet boundary condition on the aerodynamic and thermal behavior of the turbine. While the aerodynamics show minor sensitivity against the way of applying the inlet boundary conditions, the thermal behavior of the vanes is strongly affected by the modeling of combustor unsteadiness. |
Zusätzliche Informationen: | Paper No: GT2023-100884, V13DT36A00 |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) 16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) > Numerische Simulation 16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) > Turbine 16 Fachbereich Maschinenbau > Rolls-Royce University Technology Center Combustor Turbine Interaction (UTC) Zentrale Einrichtungen Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner |
Hinterlegungsdatum: | 19 Okt 2023 11:52 |
Letzte Änderung: | 19 Okt 2023 12:06 |
PPN: | 51258785X |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |