TU Darmstadt / ULB / TUbiblio

Efficient transformation of plastic wastes to H2 and electromagnetic nanocarbon absorbents over molecular-level engineered 3D NiCo/MnO

Xu, Dan ; Shen, Chen ; Liu, Xingmin ; Xie, Wenjie ; Ding, Hui ; Widenmeyer, Marc ; Mellin, Maximilian ; Qu, Fangmu ; Rashid, Aasir ; Chen, Guoxing ; Ionescu, Emanuel ; Zhang, Ye Shui ; Molina-Luna, Leopoldo ; Hofmann, Jan P. ; Brett, Dan J. L. ; Zhang, Hongbin ; Weidenkaff, Anke (2023)
Efficient transformation of plastic wastes to H2 and electromagnetic nanocarbon absorbents over molecular-level engineered 3D NiCo/MnO.
In: Chemical Engineering Journal, 476
doi: 10.1016/j.cej.2023.146477
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The advancement in the pyrolysis-catalysis conversion of waste plastics is currently limited by three problematic issues, namely lack of efficient catalysts, ambiguous catalytic mechanism, and identification of a dedicated application of carbon nanocomposites. Herein, advanced bimetallic NiCo/MnO catalysts were developed via a molecular- and macroscale-level engineering strategy. The best conversion performance among all batches was achieved for a Co:Ni molar ratio of 1:1. When the plastic-to-catalyst ratio is 10.7:1, the H2 and carbon yields of polyethylene conversion reached 29.8 mmol/gplas and 42.2 wt%, respectively. Density functional theory simulations rationalized the activity of NiCo/MnO catalysts in the dehydrogenation of hydrocarbons. The resulting carbon nanocomposites demonstrated excellent electromagnetic absorption performance with an effective absorption bandwidth of the representative carbon nanocomposites/wax composite of 5.12 GHz and a minimal reflection loss lower than −45 dB. This work provides novel insights for developing advanced catalysts for the pyrolysis-catalysis conversion of waste plastics.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Xu, Dan ; Shen, Chen ; Liu, Xingmin ; Xie, Wenjie ; Ding, Hui ; Widenmeyer, Marc ; Mellin, Maximilian ; Qu, Fangmu ; Rashid, Aasir ; Chen, Guoxing ; Ionescu, Emanuel ; Zhang, Ye Shui ; Molina-Luna, Leopoldo ; Hofmann, Jan P. ; Brett, Dan J. L. ; Zhang, Hongbin ; Weidenkaff, Anke
Art des Eintrags: Bibliographie
Titel: Efficient transformation of plastic wastes to H2 and electromagnetic nanocarbon absorbents over molecular-level engineered 3D NiCo/MnO
Sprache: Englisch
Publikationsjahr: 15 November 2023
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chemical Engineering Journal
Jahrgang/Volume einer Zeitschrift: 476
DOI: 10.1016/j.cej.2023.146477
Kurzbeschreibung (Abstract):

The advancement in the pyrolysis-catalysis conversion of waste plastics is currently limited by three problematic issues, namely lack of efficient catalysts, ambiguous catalytic mechanism, and identification of a dedicated application of carbon nanocomposites. Herein, advanced bimetallic NiCo/MnO catalysts were developed via a molecular- and macroscale-level engineering strategy. The best conversion performance among all batches was achieved for a Co:Ni molar ratio of 1:1. When the plastic-to-catalyst ratio is 10.7:1, the H2 and carbon yields of polyethylene conversion reached 29.8 mmol/gplas and 42.2 wt%, respectively. Density functional theory simulations rationalized the activity of NiCo/MnO catalysts in the dehydrogenation of hydrocarbons. The resulting carbon nanocomposites demonstrated excellent electromagnetic absorption performance with an effective absorption bandwidth of the representative carbon nanocomposites/wax composite of 5.12 GHz and a minimal reflection loss lower than −45 dB. This work provides novel insights for developing advanced catalysts for the pyrolysis-catalysis conversion of waste plastics.

Zusätzliche Informationen:

Artikel-ID: 146477

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 18 Okt 2023 05:24
Letzte Änderung: 15 Nov 2023 13:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen