Xu, Dan ; Shen, Chen ; Liu, Xingmin ; Xie, Wenjie ; Ding, Hui ; Widenmeyer, Marc ; Mellin, Maximilian ; Qu, Fangmu ; Rashid, Aasir ; Chen, Guoxing ; Ionescu, Emanuel ; Zhang, Ye Shui ; Molina-Luna, Leopoldo ; Hofmann, Jan P. ; Brett, Dan J. L. ; Zhang, Hongbin ; Weidenkaff, Anke (2023)
Efficient transformation of plastic wastes to H2 and electromagnetic nanocarbon absorbents over molecular-level engineered 3D NiCo/MnO.
In: Chemical Engineering Journal, 476
doi: 10.1016/j.cej.2023.146477
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The advancement in the pyrolysis-catalysis conversion of waste plastics is currently limited by three problematic issues, namely lack of efficient catalysts, ambiguous catalytic mechanism, and identification of a dedicated application of carbon nanocomposites. Herein, advanced bimetallic NiCo/MnO catalysts were developed via a molecular- and macroscale-level engineering strategy. The best conversion performance among all batches was achieved for a Co:Ni molar ratio of 1:1. When the plastic-to-catalyst ratio is 10.7:1, the H2 and carbon yields of polyethylene conversion reached 29.8 mmol/gplas and 42.2 wt%, respectively. Density functional theory simulations rationalized the activity of NiCo/MnO catalysts in the dehydrogenation of hydrocarbons. The resulting carbon nanocomposites demonstrated excellent electromagnetic absorption performance with an effective absorption bandwidth of the representative carbon nanocomposites/wax composite of 5.12 GHz and a minimal reflection loss lower than −45 dB. This work provides novel insights for developing advanced catalysts for the pyrolysis-catalysis conversion of waste plastics.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Xu, Dan ; Shen, Chen ; Liu, Xingmin ; Xie, Wenjie ; Ding, Hui ; Widenmeyer, Marc ; Mellin, Maximilian ; Qu, Fangmu ; Rashid, Aasir ; Chen, Guoxing ; Ionescu, Emanuel ; Zhang, Ye Shui ; Molina-Luna, Leopoldo ; Hofmann, Jan P. ; Brett, Dan J. L. ; Zhang, Hongbin ; Weidenkaff, Anke |
Art des Eintrags: | Bibliographie |
Titel: | Efficient transformation of plastic wastes to H2 and electromagnetic nanocarbon absorbents over molecular-level engineered 3D NiCo/MnO |
Sprache: | Englisch |
Publikationsjahr: | 15 November 2023 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Chemical Engineering Journal |
Jahrgang/Volume einer Zeitschrift: | 476 |
DOI: | 10.1016/j.cej.2023.146477 |
Kurzbeschreibung (Abstract): | The advancement in the pyrolysis-catalysis conversion of waste plastics is currently limited by three problematic issues, namely lack of efficient catalysts, ambiguous catalytic mechanism, and identification of a dedicated application of carbon nanocomposites. Herein, advanced bimetallic NiCo/MnO catalysts were developed via a molecular- and macroscale-level engineering strategy. The best conversion performance among all batches was achieved for a Co:Ni molar ratio of 1:1. When the plastic-to-catalyst ratio is 10.7:1, the H2 and carbon yields of polyethylene conversion reached 29.8 mmol/gplas and 42.2 wt%, respectively. Density functional theory simulations rationalized the activity of NiCo/MnO catalysts in the dehydrogenation of hydrocarbons. The resulting carbon nanocomposites demonstrated excellent electromagnetic absorption performance with an effective absorption bandwidth of the representative carbon nanocomposites/wax composite of 5.12 GHz and a minimal reflection loss lower than −45 dB. This work provides novel insights for developing advanced catalysts for the pyrolysis-catalysis conversion of waste plastics. |
Zusätzliche Informationen: | Artikel-ID: 146477 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement |
Hinterlegungsdatum: | 18 Okt 2023 05:24 |
Letzte Änderung: | 15 Nov 2023 13:10 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |