Klein, Andreas ; Albe, Karsten ; Bein, Nicole ; Clemens, Oliver ; Creutz, Kim Alexander ; Erhart, Paul ; Frericks, Markus ; Ghorbani, Elaheh ; Hofmann, Jan Philipp ; Huang, Binxiang ; Kaiser, Bernhard ; Kolb, Ute ; Koruza, Jurij ; Kübel, Christian ; Lohaus, Katharina Natalie Silvana ; Rödel, Jürgen ; Rohrer, Jochen ; Rheinheimer, Wolfgang ; Souza, Roger A. ; Streibel, Verena ; Weidenkaff, Anke ; Widenmeyer, Marc ; Xu, Bai-Xiang ; Zhang, Hongbin (2023)
The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics.
In: Journal of Electroceramics, 51 (3)
doi: 10.1007/s10832-023-00324-y
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Klein, Andreas ; Albe, Karsten ; Bein, Nicole ; Clemens, Oliver ; Creutz, Kim Alexander ; Erhart, Paul ; Frericks, Markus ; Ghorbani, Elaheh ; Hofmann, Jan Philipp ; Huang, Binxiang ; Kaiser, Bernhard ; Kolb, Ute ; Koruza, Jurij ; Kübel, Christian ; Lohaus, Katharina Natalie Silvana ; Rödel, Jürgen ; Rohrer, Jochen ; Rheinheimer, Wolfgang ; Souza, Roger A. ; Streibel, Verena ; Weidenkaff, Anke ; Widenmeyer, Marc ; Xu, Bai-Xiang ; Zhang, Hongbin |
Art des Eintrags: | Bibliographie |
Titel: | The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics |
Sprache: | Englisch |
Publikationsjahr: | 9 August 2023 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Electroceramics |
Jahrgang/Volume einer Zeitschrift: | 51 |
(Heft-)Nummer: | 3 |
Kollation: | 31 Seiten |
DOI: | 10.1007/s10832-023-00324-y |
Kurzbeschreibung (Abstract): | Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering. |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenstruktur von Materialien 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > In-Situ Elektronenmikroskopie 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1548: FLAIR – Fermi Level Engineering Applied to Oxide Electroceramics |
Hinterlegungsdatum: | 12 Okt 2023 05:20 |
Letzte Änderung: | 09 Okt 2024 08:14 |
PPN: | 512271828 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |