TU Darmstadt / ULB / TUbiblio

Dynamic Crack Propagation in a Lattice Boltzmann Method for Solid Mechanics

Müller, Henning ; Schlüter, Alexander ; Müller, Ralf (2023)
Dynamic Crack Propagation in a Lattice Boltzmann Method for Solid Mechanics.
In: PAMM - Proceedings in Applied Mathematics & Mechanics, 22
doi: 10.1002/pamm.202200114
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In recent years, Lattice Boltzmann methods (LBMs) have been adapted and developed to simulate the behavior of solids. They have already been applied to fractures as well. However, until now, our previous work has been restricted to stationary cracks.

In this work, we regard the reduced 2D case of anti‐plane shear deformation with mode III crack opening. The wave equation is the governing equation for this problem, which is solved via an LBM.

The main contribution of this work is the introduction of an algorithm to handle crack growth in an LBM for solids. The underlying scheme is based on geometric assumptions, which is well suited for the regular lattice used by the LBM. A fracture criterion based on the stress intensity factor is implemented and illustrated by a numerical example.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Müller, Henning ; Schlüter, Alexander ; Müller, Ralf
Art des Eintrags: Bibliographie
Titel: Dynamic Crack Propagation in a Lattice Boltzmann Method for Solid Mechanics
Sprache: Englisch
Publikationsjahr: 2023
Ort: Hoboken, New Jersey, USA
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM - Proceedings in Applied Mathematics & Mechanics
Jahrgang/Volume einer Zeitschrift: 22
Kollation: 6 Seiten
DOI: 10.1002/pamm.202200114
Zugehörige Links:
Kurzbeschreibung (Abstract):

In recent years, Lattice Boltzmann methods (LBMs) have been adapted and developed to simulate the behavior of solids. They have already been applied to fractures as well. However, until now, our previous work has been restricted to stationary cracks.

In this work, we regard the reduced 2D case of anti‐plane shear deformation with mode III crack opening. The wave equation is the governing equation for this problem, which is solved via an LBM.

The main contribution of this work is the introduction of an algorithm to handle crack growth in an LBM for solids. The underlying scheme is based on geometric assumptions, which is well suited for the regular lattice used by the LBM. A fracture criterion based on the stress intensity factor is implemented and illustrated by a numerical example.

Zusätzliche Informationen:

Artikel-ID: e202200114; 92nd Annual Meeting of the International Associtatin of Applied Mathematics and Mechanics (GAMM), Aachen, Germany, 15.08. - 19.08.2023

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 05 Okt 2023 04:52
Letzte Änderung: 08 Mai 2024 08:22
PPN: 512641587
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen