TU Darmstadt / ULB / TUbiblio

Nanostructured Ti-13Nb-13Zr alloy for implant application —material scientific, technological, and biological aspects

Klinge, Lina ; Kluy, Lukas ; Spiegel, Christopher ; Siemers, Carsten ; Groche, Peter ; Coraça-Huber, Débora (2023)
Nanostructured Ti-13Nb-13Zr alloy for implant application —material scientific, technological, and biological aspects.
In: Frontiers in Bioengineering and Biotechnology, 11
doi: 10.3389/fbioe.2023.1255947
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In dentistry, the most commonly used implant materials are CP-Titanium Grade 4 and Ti-6Al-4V ELI, possessing comparably high Young’s modulus (>100 GPa). In the present study, the second-generation titanium alloy Ti-13Nb-13Zr is investigated with respect to the production of advanced dental implant systems. This should be achieved by the fabrication of long semi-finished bars with high strength and sufficient ductility to allow the automated production of small implants at low Young’s modulus (<80 GPa) to minimize stress shielding, bone resorption, and gap formation between the bone and implant. In addition, bacterial colonization is to be reduced, and bone adhesion is to be enhanced by adjusting the microstructure. To do so, a dedicated thermo-mechanical treatment for Ti-13Nb-13Zr has been developed. This includes the adaption of equal channel angular swaging, a modern process of severe plastic deformation to continuously manufacture nanostructured materials, to Ti-13Nb-13Zr and short-time recrystallization and ageing treatments. In particular, two-pass equal channel angular swaging at a deformation temperature of 150°C and a counterpressure of 8 MPa has successfully been used to avoid shear band formation during deformation and to produce long Ti-13Nb-13Zr bars of 8mm diameter. During recrystallization treatment at 700°C for 10 min followed by water quenching, a sub-micron-size primary ?-phase in a matrix of ??-phase was developed. Subsequent ageing at 500°C for 1 h leads to martensite decomposition and, thus, to a homogeneously nanostructured microstructure of ?- and ?-phase with substructures smaller than 200 nm. The resulting mechanical properties, especially the ultimate tensile strength of more than 990 MPa, fulfill the requirements of ASTM F1713 at Young’s modulus of 73 GPa. Biological investigations show promising results in reducing bacterial biofilm formation and increased cell proliferation of osteoblasts compared to CP-Titanium

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Klinge, Lina ; Kluy, Lukas ; Spiegel, Christopher ; Siemers, Carsten ; Groche, Peter ; Coraça-Huber, Débora
Art des Eintrags: Bibliographie
Titel: Nanostructured Ti-13Nb-13Zr alloy for implant application —material scientific, technological, and biological aspects
Sprache: Deutsch
Publikationsjahr: 2023
Verlag: Frontiers
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Bioengineering and Biotechnology
Jahrgang/Volume einer Zeitschrift: 11
DOI: 10.3389/fbioe.2023.1255947
URL / URN: https://www.frontiersin.org/articles/10.3389/fbioe.2023.1255...
Kurzbeschreibung (Abstract):

In dentistry, the most commonly used implant materials are CP-Titanium Grade 4 and Ti-6Al-4V ELI, possessing comparably high Young’s modulus (>100 GPa). In the present study, the second-generation titanium alloy Ti-13Nb-13Zr is investigated with respect to the production of advanced dental implant systems. This should be achieved by the fabrication of long semi-finished bars with high strength and sufficient ductility to allow the automated production of small implants at low Young’s modulus (<80 GPa) to minimize stress shielding, bone resorption, and gap formation between the bone and implant. In addition, bacterial colonization is to be reduced, and bone adhesion is to be enhanced by adjusting the microstructure. To do so, a dedicated thermo-mechanical treatment for Ti-13Nb-13Zr has been developed. This includes the adaption of equal channel angular swaging, a modern process of severe plastic deformation to continuously manufacture nanostructured materials, to Ti-13Nb-13Zr and short-time recrystallization and ageing treatments. In particular, two-pass equal channel angular swaging at a deformation temperature of 150°C and a counterpressure of 8 MPa has successfully been used to avoid shear band formation during deformation and to produce long Ti-13Nb-13Zr bars of 8mm diameter. During recrystallization treatment at 700°C for 10 min followed by water quenching, a sub-micron-size primary ?-phase in a matrix of ??-phase was developed. Subsequent ageing at 500°C for 1 h leads to martensite decomposition and, thus, to a homogeneously nanostructured microstructure of ?- and ?-phase with substructures smaller than 200 nm. The resulting mechanical properties, especially the ultimate tensile strength of more than 990 MPa, fulfill the requirements of ASTM F1713 at Young’s modulus of 73 GPa. Biological investigations show promising results in reducing bacterial biofilm formation and increased cell proliferation of osteoblasts compared to CP-Titanium

Freie Schlagworte: Ti-13Nb-13Zr, nanostructured titanium, equal channel angular swaging, biofilm, Staphylococcus aureus, implant material, osteoblasts
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU)
Hinterlegungsdatum: 04 Okt 2023 13:25
Letzte Änderung: 04 Okt 2023 13:25
PPN: 512034443
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen