Khalil, Ahmad ; Wainakh, Aidmar ; Zimmer, Ephraim ; Parra-Arnau, Javier ; Fernández Anta, Antonio ; Meuser, Tobias ; Steinmetz, Ralf (2023)
Label-Aware Aggregation for Improved Federated Learning.
8th International Conference on Fog and Mobile Edge Computing. Tartu, Estonia (18.09.2023-20.09.2023)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Federated Averaging (FedAvg) is the most common aggregation method used in Federated learning, which performs a weighted averaging of the updates based on the sizes of the individual datasets of each client. A raising discussion in the research community suggests that FedAvg might not be the optimal method since, for instance, it does not fully take into account the variety of the client data distributions. In this paper, we propose a label-aware aggregation method FedLA, that addresses the biased models issue by considering the variety of labels in the weighted averaging. It combines two main properties of the client data, namely data size and label distribution. Through extensive experiments, we demonstrate that FedLA is particularly effective in several heterogeneous data distribution scenarios. Especially when only a small group of the clients is participating in the Federated Learning process. Furthermore, we argue that accurately describing the data distribution is crucial in selecting the appropriate aggregation method. In this regard, we discuss various properties that can be used to describe data distribution and illustrate how these properties can guide the choice of an aggregation method for specific data distributions.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Khalil, Ahmad ; Wainakh, Aidmar ; Zimmer, Ephraim ; Parra-Arnau, Javier ; Fernández Anta, Antonio ; Meuser, Tobias ; Steinmetz, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Label-Aware Aggregation for Improved Federated Learning |
Sprache: | Englisch |
Publikationsjahr: | 21 September 2023 |
Veranstaltungstitel: | 8th International Conference on Fog and Mobile Edge Computing |
Veranstaltungsort: | Tartu, Estonia |
Veranstaltungsdatum: | 18.09.2023-20.09.2023 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Federated Averaging (FedAvg) is the most common aggregation method used in Federated learning, which performs a weighted averaging of the updates based on the sizes of the individual datasets of each client. A raising discussion in the research community suggests that FedAvg might not be the optimal method since, for instance, it does not fully take into account the variety of the client data distributions. In this paper, we propose a label-aware aggregation method FedLA, that addresses the biased models issue by considering the variety of labels in the weighted averaging. It combines two main properties of the client data, namely data size and label distribution. Through extensive experiments, we demonstrate that FedLA is particularly effective in several heterogeneous data distribution scenarios. Especially when only a small group of the clients is participating in the Federated Learning process. Furthermore, we argue that accurately describing the data distribution is crucial in selecting the appropriate aggregation method. In this regard, we discuss various properties that can be used to describe data distribution and illustrate how these properties can guide the choice of an aggregation method for specific data distributions. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation 20 Fachbereich Informatik 20 Fachbereich Informatik > Telekooperation DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Graduiertenkollegs DFG-Graduiertenkollegs > Graduiertenkolleg 2050 Privacy and Trust for Mobile Users DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B1: Monitoring und Analyse |
Hinterlegungsdatum: | 11 Okt 2023 08:22 |
Letzte Änderung: | 23 Okt 2023 10:40 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |