TU Darmstadt / ULB / TUbiblio

Tailoring Pore Networks – Gas Diffusion Electrodes via Additive Manufacturing

Weber, Nils ; Linkhorst, John ; Keller, Robert ; Wessling, Matthias (2023)
Tailoring Pore Networks – Gas Diffusion Electrodes via Additive Manufacturing.
In: Advanced Materials Technologies
doi: 10.1002/admt.202300720
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Additive manufacturing (AM) is a promising alternative to conventional electrode production due to its high freedom of design, excellent reproducibility, and a manifold choice of metals serving as substrates or even electrocatalysts in various electrochemical reactions. Nonetheless, porous gas diffusion electrodes (GDEs) have not been fabricated by AM due to the required resolution of the pore network in the micron to submicron range. Herein, the single-step fabrication of GDEs via AM is demonstrated for the first time. Selective laser melting is used to control the porosity, the pore diameter, and the electrochemically active surface area of the generated pore network by engineering the laser hatching strategy. In this way, the electrocatalytic activity of the fabricated GDEs is tuned for CO2 electroreduction. The CO2 reduction reaction is amplified whilst the competing hydrogen evolution reaction is mitigated at high current densities of 100 mA cm-2. The presented method is a step further towards the production of next-generation electrodes with tailored gas diffusion layers, thereby boosting electrode performance in a wide range of electrochemical applications.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Weber, Nils ; Linkhorst, John ; Keller, Robert ; Wessling, Matthias
Art des Eintrags: Bibliographie
Titel: Tailoring Pore Networks – Gas Diffusion Electrodes via Additive Manufacturing
Sprache: Englisch
Publikationsjahr: 2023
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials Technologies
DOI: 10.1002/admt.202300720
Kurzbeschreibung (Abstract):

Additive manufacturing (AM) is a promising alternative to conventional electrode production due to its high freedom of design, excellent reproducibility, and a manifold choice of metals serving as substrates or even electrocatalysts in various electrochemical reactions. Nonetheless, porous gas diffusion electrodes (GDEs) have not been fabricated by AM due to the required resolution of the pore network in the micron to submicron range. Herein, the single-step fabrication of GDEs via AM is demonstrated for the first time. Selective laser melting is used to control the porosity, the pore diameter, and the electrochemically active surface area of the generated pore network by engineering the laser hatching strategy. In this way, the electrocatalytic activity of the fabricated GDEs is tuned for CO2 electroreduction. The CO2 reduction reaction is amplified whilst the competing hydrogen evolution reaction is mitigated at high current densities of 100 mA cm-2. The presented method is a step further towards the production of next-generation electrodes with tailored gas diffusion layers, thereby boosting electrode performance in a wide range of electrochemical applications.

Freie Schlagworte: CO2 reduction, copper 3D printing, electrosynthesis, hollow fiber electrodes, porosity, selective laser melting
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Verfahrenstechnik elektrochemischer Systeme (VES)
Hinterlegungsdatum: 13 Sep 2023 11:13
Letzte Änderung: 13 Sep 2023 11:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen