TU Darmstadt / ULB / TUbiblio

Magnetically Actuable Complex-Shaped Microgels for Spatio-Temporal Flow Control

Steinbeck, Lea ; Braunmiller, Dominik L. ; Wolff, Hanna J. M. ; Huettche, Vincent ; Wang, Julia ; Wessling, Matthias ; Crassous, Jérôme J. ; Linkhorst, John (2023)
Magnetically Actuable Complex-Shaped Microgels for Spatio-Temporal Flow Control.
In: Advanced Materials Technologies, 8 (14)
doi: 10.1002/admt.202300044
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Complex-shaped microgels are promising building blocks for soft metamaterials. Their active and remote orientational control provides significant potential in architecting them in time and space. This work describes the use of magnetically actuable microgels of complex shape for spatio-temporal flow control and showcases the concept for microfluidic impellers. First, the fabrication of complex-shaped magnetically actuable poly(ethylene glycol) diacrylate based microgels via stop-flow lithography is presented. The microgels comprise a pre-programmed magnetic moment set by pre-aligned maghemite nanospindles during the fabrication step. This feature allows the microgels to be positioned in a static magnetic field and rotate under application of a rotating external field. The dependence of the magnetic field rotation rate and strength, maghemite content, and microgel shape on the magnetic response of the microgels is comprehensively quantified. Finally, the magnetic complex-shaped microgels are integrated as actuable impellers in a microfluidic chip. The microgels are positioned in space by polymerizing them around fixed poly(dimethylsiloxane) (PDMS) pillars. Free rotation around the PDMS pillar is achieved due to the oxygen inhibition layer at the chip and pillar surface. The versatility of the fabrication methodology is showcased by the investigation of in-chip mixing in a microfluidic device consisting of soft responsive impellers.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Steinbeck, Lea ; Braunmiller, Dominik L. ; Wolff, Hanna J. M. ; Huettche, Vincent ; Wang, Julia ; Wessling, Matthias ; Crassous, Jérôme J. ; Linkhorst, John
Art des Eintrags: Bibliographie
Titel: Magnetically Actuable Complex-Shaped Microgels for Spatio-Temporal Flow Control
Sprache: Englisch
Publikationsjahr: 2023
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials Technologies
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 14
DOI: 10.1002/admt.202300044
Kurzbeschreibung (Abstract):

Complex-shaped microgels are promising building blocks for soft metamaterials. Their active and remote orientational control provides significant potential in architecting them in time and space. This work describes the use of magnetically actuable microgels of complex shape for spatio-temporal flow control and showcases the concept for microfluidic impellers. First, the fabrication of complex-shaped magnetically actuable poly(ethylene glycol) diacrylate based microgels via stop-flow lithography is presented. The microgels comprise a pre-programmed magnetic moment set by pre-aligned maghemite nanospindles during the fabrication step. This feature allows the microgels to be positioned in a static magnetic field and rotate under application of a rotating external field. The dependence of the magnetic field rotation rate and strength, maghemite content, and microgel shape on the magnetic response of the microgels is comprehensively quantified. Finally, the magnetic complex-shaped microgels are integrated as actuable impellers in a microfluidic chip. The microgels are positioned in space by polymerizing them around fixed poly(dimethylsiloxane) (PDMS) pillars. Free rotation around the PDMS pillar is achieved due to the oxygen inhibition layer at the chip and pillar surface. The versatility of the fabrication methodology is showcased by the investigation of in-chip mixing in a microfluidic device consisting of soft responsive impellers.

Freie Schlagworte: flow control, maghemite spindles, magnetic actuation, microgels, stop-flow lithography
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Verfahrenstechnik elektrochemischer Systeme (VES)
Hinterlegungsdatum: 13 Sep 2023 11:13
Letzte Änderung: 13 Sep 2023 11:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen