TU Darmstadt / ULB / TUbiblio

Micromodel of a Gas Diffusion Electrode Tracks In-Operando Pore-Scale Wetting Phenomena

Kalde, Anna M. ; Grosseheide, Maren ; Brosch, Sebastian ; Pape, Sharon V. ; Keller, Robert G. ; Linkhorst, John ; Wessling, Matthias (2022)
Micromodel of a Gas Diffusion Electrode Tracks In-Operando Pore-Scale Wetting Phenomena.
In: Small, 18 (49)
doi: 10.1002/smll.202204012
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Utilizing carbon dioxide (CO2) as a resource for carbon monoxide (CO) production using renewable energy requires electrochemical reactors with gas diffusion electrodes that maintain a stable and highly reactive gas/liquid/solid interface. Very little is known about the reasons why gas diffusion electrodes suffer from unstable long-term operation. Often, this is associated with flooding of the gas diffusion electrode (GDE) within a few hours of operation. A better understanding of parameters influencing the phase behavior at the electrolyte/electrode/gas interface is necessary to increase the durability of GDEs. In this work, a microfluidic structure with multi-scale porosity featuring heterogeneous surface wettability to realistically represent the behavior of conventional GDEs is presented. A gas/liquid/solid phase boundary was established within a conductive, highly porous structure comprising a silver catalyst and Nafion binder. Inoperando visualization of wetting phenomena was performed using confocal laser scanning microscopy (CLSM). Non-reversible wetting, wetting of hierarchically porous structures and electrowetting were observed and analyzed. Fluorescence lifetime imaging microscopy (FLIM) enabled the observation of reactions on the model electrode surface. The presented methodology enables the systematic evaluation of spatio-temporally evolving wetting phenomena as well as species characterization for novel catalyst materials under realistic GDE configurations and process parameters.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Kalde, Anna M. ; Grosseheide, Maren ; Brosch, Sebastian ; Pape, Sharon V. ; Keller, Robert G. ; Linkhorst, John ; Wessling, Matthias
Art des Eintrags: Bibliographie
Titel: Micromodel of a Gas Diffusion Electrode Tracks In-Operando Pore-Scale Wetting Phenomena
Sprache: Englisch
Publikationsjahr: 2022
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Small
Jahrgang/Volume einer Zeitschrift: 18
(Heft-)Nummer: 49
DOI: 10.1002/smll.202204012
Kurzbeschreibung (Abstract):

Utilizing carbon dioxide (CO2) as a resource for carbon monoxide (CO) production using renewable energy requires electrochemical reactors with gas diffusion electrodes that maintain a stable and highly reactive gas/liquid/solid interface. Very little is known about the reasons why gas diffusion electrodes suffer from unstable long-term operation. Often, this is associated with flooding of the gas diffusion electrode (GDE) within a few hours of operation. A better understanding of parameters influencing the phase behavior at the electrolyte/electrode/gas interface is necessary to increase the durability of GDEs. In this work, a microfluidic structure with multi-scale porosity featuring heterogeneous surface wettability to realistically represent the behavior of conventional GDEs is presented. A gas/liquid/solid phase boundary was established within a conductive, highly porous structure comprising a silver catalyst and Nafion binder. Inoperando visualization of wetting phenomena was performed using confocal laser scanning microscopy (CLSM). Non-reversible wetting, wetting of hierarchically porous structures and electrowetting were observed and analyzed. Fluorescence lifetime imaging microscopy (FLIM) enabled the observation of reactions on the model electrode surface. The presented methodology enables the systematic evaluation of spatio-temporally evolving wetting phenomena as well as species characterization for novel catalyst materials under realistic GDE configurations and process parameters.

Freie Schlagworte: gas diffusion electrodes, microfluidics, reaction mapping, wetting
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Verfahrenstechnik elektrochemischer Systeme (VES)
Hinterlegungsdatum: 13 Sep 2023 11:13
Letzte Änderung: 13 Sep 2023 11:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen