TU Darmstadt / ULB / TUbiblio

Machine Learning Advice in Managerial Decision-Making: The Overlooked Role of Decision Makers’ Advice Utilization

Sturm, Timo ; Pumplun, Luisa ; Gerlach, Jin ; Kowalczyk, Martin ; Buxmann, Peter (2023)
Machine Learning Advice in Managerial Decision-Making: The Overlooked Role of Decision Makers’ Advice Utilization.
In: The Journal of Strategic Information Systems, 32 (4)
doi: 10.1016/j.jsis.2023.101790
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Machine learning (ML) analyses offer great potential to craft profound advice for augmenting managerial decision-making. Yet, even the most promising ML advice cannot improve decision-making if it is not utilized by decision makers. We therefore investigate how ML analyses influence decision makers’ utilization of advice and resulting decision-making performance. By analyzing data from 239 ML-supported decisions in real-world organizational scenarios, we demonstrate that decision makers’ utilization of ML advice depends on the information quality and transparency of ML advice as well as decision makers’ trust in data scientists’ competence. Furthermore, we find that decision makers’ utilization of ML advice can lead to improved decision-making performance, which is, however, moderated by the decision makers’ management level. The study’s results can help organizations leverage ML advice to improve decision-making and promote the mutual consideration of technical and social aspects behind ML advice in research and practice as a basic requirement.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Sturm, Timo ; Pumplun, Luisa ; Gerlach, Jin ; Kowalczyk, Martin ; Buxmann, Peter
Art des Eintrags: Bibliographie
Titel: Machine Learning Advice in Managerial Decision-Making: The Overlooked Role of Decision Makers’ Advice Utilization
Sprache: Englisch
Publikationsjahr: Dezember 2023
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Journal of Strategic Information Systems
Jahrgang/Volume einer Zeitschrift: 32
(Heft-)Nummer: 4
DOI: 10.1016/j.jsis.2023.101790
URL / URN: https://www.sciencedirect.com/science/article/abs/pii/S09638...
Kurzbeschreibung (Abstract):

Machine learning (ML) analyses offer great potential to craft profound advice for augmenting managerial decision-making. Yet, even the most promising ML advice cannot improve decision-making if it is not utilized by decision makers. We therefore investigate how ML analyses influence decision makers’ utilization of advice and resulting decision-making performance. By analyzing data from 239 ML-supported decisions in real-world organizational scenarios, we demonstrate that decision makers’ utilization of ML advice depends on the information quality and transparency of ML advice as well as decision makers’ trust in data scientists’ competence. Furthermore, we find that decision makers’ utilization of ML advice can lead to improved decision-making performance, which is, however, moderated by the decision makers’ management level. The study’s results can help organizations leverage ML advice to improve decision-making and promote the mutual consideration of technical and social aspects behind ML advice in research and practice as a basic requirement.

Zusätzliche Informationen:

Article ID 101790

Fachbereich(e)/-gebiet(e): 01 Fachbereich Rechts- und Wirtschaftswissenschaften
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Wirtschaftsinformatik
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Software Business & Information Management
Hinterlegungsdatum: 15 Aug 2023 12:15
Letzte Änderung: 15 Aug 2023 12:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen