TU Darmstadt / ULB / TUbiblio

Thermo-Elastic Topology Optimization For High Temperatures Gradients Using Load Separation

Bode, Behrend ; Herrmann, Kevin ; Reusch, Jannis ; Plappert, Stefan ; Ehlers, Tobias ; Gembarski, Paul Christoph ; Hasse, Christian ; Lachmayer, Roland (2023)
Thermo-Elastic Topology Optimization For High Temperatures Gradients Using Load Separation.
In: Procedia CIRP, 119
doi: 10.1016/j.procir.2023.03.113
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Designing components for thermo-mechanical loads is a challenging process. While mechanical loads like forces or pressure demand a stiff and thick-walled design, thermal loads create temperature gradients, resulting in thermo-mechanical stress from the structure's temperature proportional and, therefore, uneven expansion. In contrast to a pure mechanical load case, an initial design before optimization can already include stress levels beyond the limit of the material. Therefore, common optimization approaches for a preliminary design use exemplary systems with low-temperature gradients, so thermal stresses do not exceed the limit. From there, energy density is used to calculate the topology optimizations sensitivity and therefore decide which elements to remove and which to keep. This paper describes a novel approach for reducing thermo-mechanical stress by following the stress corresponding temperature gradients from the heat source to the sink to calculate a new sensitivity that helps to grow cooling channels. The optimization is exemplarily shown on a piston for internal combustion engines. While handling delta temperatures of 600K, results show a reduction in thermo-mechanical stress while reducing the component's mass. Because the approach reduces critical stress in a component, it allows the initial design (before the topology optimization) to have stress levels way above yield strength.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Bode, Behrend ; Herrmann, Kevin ; Reusch, Jannis ; Plappert, Stefan ; Ehlers, Tobias ; Gembarski, Paul Christoph ; Hasse, Christian ; Lachmayer, Roland
Art des Eintrags: Bibliographie
Titel: Thermo-Elastic Topology Optimization For High Temperatures Gradients Using Load Separation
Sprache: Englisch
Publikationsjahr: Juli 2023
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP
Jahrgang/Volume einer Zeitschrift: 119
DOI: 10.1016/j.procir.2023.03.113
URL / URN: https://www.sciencedirect.com/science/article/pii/S221282712...
Kurzbeschreibung (Abstract):

Designing components for thermo-mechanical loads is a challenging process. While mechanical loads like forces or pressure demand a stiff and thick-walled design, thermal loads create temperature gradients, resulting in thermo-mechanical stress from the structure's temperature proportional and, therefore, uneven expansion. In contrast to a pure mechanical load case, an initial design before optimization can already include stress levels beyond the limit of the material. Therefore, common optimization approaches for a preliminary design use exemplary systems with low-temperature gradients, so thermal stresses do not exceed the limit. From there, energy density is used to calculate the topology optimizations sensitivity and therefore decide which elements to remove and which to keep. This paper describes a novel approach for reducing thermo-mechanical stress by following the stress corresponding temperature gradients from the heat source to the sink to calculate a new sensitivity that helps to grow cooling channels. The optimization is exemplarily shown on a piston for internal combustion engines. While handling delta temperatures of 600K, results show a reduction in thermo-mechanical stress while reducing the component's mass. Because the approach reduces critical stress in a component, it allows the initial design (before the topology optimization) to have stress levels way above yield strength.

Freie Schlagworte: Finite Element Analysis (FEA), topology, optimization, thermal, elastic, cooling, piston, stress, separation, temperature, gradients, structural, design
Zusätzliche Informationen:

The 33rd CIRP Design Conference

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS)
Hinterlegungsdatum: 15 Aug 2023 08:23
Letzte Änderung: 15 Aug 2023 08:23
PPN: 510632416
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen