TU Darmstadt / ULB / TUbiblio

Modelling transient stresses in dynamically loaded elastic solids using the Lattice Boltzmann Method

Faust, Erik ; Steinmetz, Felix ; Schlüter, Alexander ; Müller, Henning ; Müller, Ralf (2023)
Modelling transient stresses in dynamically loaded elastic solids using the Lattice Boltzmann Method.
In: PAMM - Proceedings in Applied Mathematics and Mechanics, 2023, 23 (1)
doi: 10.26083/tuprints-00024294
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In solids subjected to transient loading, inertial effects and S‐ or P‐wave superposition can give rise to stresses which significantly exceed those predicted by quasi‐static models. It pays to accurately predict such stresses – and the failures induced by them – in fields from mining to automotive safety and biomechanics. This, however, requires costly simulations with fine spatial and temporal resolutions.

The Lattice Boltzmann Method (LBM) can be used as an explicit numerical solver for certain appropriately formulated conservation laws [1]. It encodes information about the field variables to be simulated in distribution functions, which are modified locally and propagated across a regular lattice. As the LBM lends itself to finely discretised simulations and is easy to parallelise [2, p.55], it is an intriguing candidate as a solver for dynamic continuum problems.

Recently, Murthy et al. [3] and Escande et al. [4] adopted LBM algorithms to model isotropic, linear elastic solids. We extended these algorithms using local boundary rules that allow us to model arbitrary‐valued Dirichlet and Neumann boundaries. Here, we illustrate applications of the LBM for solids and the proposed additions by way of a simple numerical example – a glass pane subject to a sudden impact load.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Faust, Erik ; Steinmetz, Felix ; Schlüter, Alexander ; Müller, Henning ; Müller, Ralf
Art des Eintrags: Zweitveröffentlichung
Titel: Modelling transient stresses in dynamically loaded elastic solids using the Lattice Boltzmann Method
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Verlag: Wiley‐VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM - Proceedings in Applied Mathematics and Mechanics
Jahrgang/Volume einer Zeitschrift: 23
(Heft-)Nummer: 1
Kollation: 6 Seiten
DOI: 10.26083/tuprints-00024294
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24294
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In solids subjected to transient loading, inertial effects and S‐ or P‐wave superposition can give rise to stresses which significantly exceed those predicted by quasi‐static models. It pays to accurately predict such stresses – and the failures induced by them – in fields from mining to automotive safety and biomechanics. This, however, requires costly simulations with fine spatial and temporal resolutions.

The Lattice Boltzmann Method (LBM) can be used as an explicit numerical solver for certain appropriately formulated conservation laws [1]. It encodes information about the field variables to be simulated in distribution functions, which are modified locally and propagated across a regular lattice. As the LBM lends itself to finely discretised simulations and is easy to parallelise [2, p.55], it is an intriguing candidate as a solver for dynamic continuum problems.

Recently, Murthy et al. [3] and Escande et al. [4] adopted LBM algorithms to model isotropic, linear elastic solids. We extended these algorithms using local boundary rules that allow us to model arbitrary‐valued Dirichlet and Neumann boundaries. Here, we illustrate applications of the LBM for solids and the proposed additions by way of a simple numerical example – a glass pane subject to a sudden impact load.

ID-Nummer: e202200163
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-242944
Zusätzliche Informationen:

Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 07 Aug 2023 08:20
Letzte Änderung: 09 Aug 2023 05:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen