TU Darmstadt / ULB / TUbiblio

On Quantum Ciphertext Indistinguishability, Recoverability, and OAEP

Krämer, Juliane ; Struck, Patrick (2022)
On Quantum Ciphertext Indistinguishability, Recoverability, and OAEP.
13th International Conference on Post-Quantum Cryptography. virtual Conference (28.09.2022-30.09.2022)
doi: 10.1007/978-3-031-17234-2_14
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The qINDqCPA security notion for public-key encryption schemes by Gagliardoni et al. (PQCrypto’21) models security against adversaries which are able to obtain ciphertexts in superposition. Defining this security notion requires a special type of quantum operator. Known constructions differ in which keys are necessary to construct this operator, depending on properties of the encryption scheme.

We argue—for the typical setting of securing communication between Alice and Bob—that in order to apply the notion, the quantum operator should be realizable for challengers knowing only the public key. This is already known to be the case for a wide range of public-key encryption schemes, in particular, those exhibiting the so-called recoverability property which allows to recover the message from a ciphertext using the randomness instead of the secret key.

The open question is whether there are real-world public-key encryption schemes for which the notion is not applicable, considering the aforementioned observation on the keys known by the challenger. We answer this question in the affirmative by showing that applying the qINDqCPA security notion to the OAEP construction requires the challenger to know the secret key. We conclude that the qINDqCPA security notion might need to be refined to eventually yield a universally applicable PKE notion of quantum security with a quantum indistinguishability phase.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Krämer, Juliane ; Struck, Patrick
Art des Eintrags: Bibliographie
Titel: On Quantum Ciphertext Indistinguishability, Recoverability, and OAEP
Sprache: Englisch
Publikationsjahr: 21 September 2022
Verlag: Springer
Buchtitel: Post-Quantum Cryptography
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 13512
Veranstaltungstitel: 13th International Conference on Post-Quantum Cryptography
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 28.09.2022-30.09.2022
DOI: 10.1007/978-3-031-17234-2_14
URL / URN: https://link.springer.com/chapter/10.1007/978-3-031-17234-2_...
Zugehörige Links:
Kurzbeschreibung (Abstract):

The qINDqCPA security notion for public-key encryption schemes by Gagliardoni et al. (PQCrypto’21) models security against adversaries which are able to obtain ciphertexts in superposition. Defining this security notion requires a special type of quantum operator. Known constructions differ in which keys are necessary to construct this operator, depending on properties of the encryption scheme.

We argue—for the typical setting of securing communication between Alice and Bob—that in order to apply the notion, the quantum operator should be realizable for challengers knowing only the public key. This is already known to be the case for a wide range of public-key encryption schemes, in particular, those exhibiting the so-called recoverability property which allows to recover the message from a ciphertext using the randomness instead of the secret key.

The open question is whether there are real-world public-key encryption schemes for which the notion is not applicable, considering the aforementioned observation on the keys known by the challenger. We answer this question in the affirmative by showing that applying the qINDqCPA security notion to the OAEP construction requires the challenger to know the secret key. We conclude that the qINDqCPA security notion might need to be refined to eventually yield a universally applicable PKE notion of quantum security with a quantum indistinguishability phase.

Freie Schlagworte: Primitives, P1
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > QPC - Quantum and Physical attack resistant Cryptography
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Profilbereiche
Profilbereiche > Cybersicherheit (CYSEC)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 07 Aug 2023 10:39
Letzte Änderung: 07 Aug 2023 14:33
PPN: 510423841
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen