TU Darmstadt / ULB / TUbiblio

The Power of Trust: Designing Trustworthy Machine Learning Systems in Healthcare

Fecho, Mariska ; Zöll, Anne (2023)
The Power of Trust: Designing Trustworthy Machine Learning Systems in Healthcare.
International Conference on Information Systems. Hyderabad, India (10.12.2023-13.12.2023)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Machine Learning (ML) systems have an enormous potential to improve medical care, but skepticism about their use persists. Their inscrutability is a major concern which can lead to negative attitudes reducing end users trust and resulting in rejection. Consequently, many ML systems in healthcare suffer from a lack of user-centricity. To overcome these challenges, we designed a user-centered, trustworthy ML system by applying design science research. The design includes meta-requirements and design principles instantiated by mockups. The design is grounded on our kernel theory, the Trustworthy Artificial Intelligence principles. In three design cycles, we refined the design through focus group discussions (N1=8), evaluation of existing applications, and an online survey (N2=40). Finally, an effectiveness test was conducted with end users (N3=80) to assess the perceived trustworthiness of our design. The results demonstrated that the end users did indeed perceive our design as more trustworthy.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Fecho, Mariska ; Zöll, Anne
Art des Eintrags: Bibliographie
Titel: The Power of Trust: Designing Trustworthy Machine Learning Systems in Healthcare
Sprache: Englisch
Publikationsjahr: 10 Dezember 2023
Ort: Proceedings of the International Conference on Information Systems
Veranstaltungstitel: International Conference on Information Systems
Veranstaltungsort: Hyderabad, India
Veranstaltungsdatum: 10.12.2023-13.12.2023
Zugehörige Links:
Kurzbeschreibung (Abstract):

Machine Learning (ML) systems have an enormous potential to improve medical care, but skepticism about their use persists. Their inscrutability is a major concern which can lead to negative attitudes reducing end users trust and resulting in rejection. Consequently, many ML systems in healthcare suffer from a lack of user-centricity. To overcome these challenges, we designed a user-centered, trustworthy ML system by applying design science research. The design includes meta-requirements and design principles instantiated by mockups. The design is grounded on our kernel theory, the Trustworthy Artificial Intelligence principles. In three design cycles, we refined the design through focus group discussions (N1=8), evaluation of existing applications, and an online survey (N2=40). Finally, an effectiveness test was conducted with end users (N3=80) to assess the perceived trustworthiness of our design. The results demonstrated that the end users did indeed perceive our design as more trustworthy.

Fachbereich(e)/-gebiet(e): 01 Fachbereich Rechts- und Wirtschaftswissenschaften
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Wirtschaftsinformatik
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Software Business & Information Management
Hinterlegungsdatum: 27 Nov 2023 09:14
Letzte Änderung: 27 Nov 2023 09:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen