TU Darmstadt / ULB / TUbiblio

Revisiting Unsupervised Relation Extraction

Tran, Thy Thy ; Le, Phong ; Ananiadou, Sophia (2020)
Revisiting Unsupervised Relation Extraction.
58th Annual Meeting of the Association for Computational Linguistics. virtual Conference (05.07.2020-10.07.2020)
doi: 10.18653/v1/2020.acl-main.669
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Unsupervised relation extraction (URE) extracts relations between named entities from raw text without manually-labelled data and existing knowledge bases (KBs). URE methods can be categorised into generative and discriminative approaches, which rely either on hand-crafted features or surface form. However, we demonstrate that by using only named entities to induce relation types, we can outperform existing methods on two popular datasets. We conduct a comparison and evaluation of our findings with other URE techniques, to ascertain the important features in URE. We conclude that entity types provide a strong inductive bias for URE.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Tran, Thy Thy ; Le, Phong ; Ananiadou, Sophia
Art des Eintrags: Bibliographie
Titel: Revisiting Unsupervised Relation Extraction
Sprache: Englisch
Publikationsjahr: Juli 2020
Verlag: ACL
Buchtitel: The 58th Annual Meeting of the Association for Computational Linguistics: Proceedings of the Conference
Veranstaltungstitel: 58th Annual Meeting of the Association for Computational Linguistics
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 05.07.2020-10.07.2020
DOI: 10.18653/v1/2020.acl-main.669
URL / URN: https://aclanthology.org/2020.acl-main.669
Kurzbeschreibung (Abstract):

Unsupervised relation extraction (URE) extracts relations between named entities from raw text without manually-labelled data and existing knowledge bases (KBs). URE methods can be categorised into generative and discriminative approaches, which rely either on hand-crafted features or surface form. However, we demonstrate that by using only named entities to induce relation types, we can outperform existing methods on two popular datasets. We conduct a comparison and evaluation of our findings with other URE techniques, to ascertain the important features in URE. We conclude that entity types provide a strong inductive bias for URE.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 02 Aug 2023 14:13
Letzte Änderung: 04 Aug 2023 08:43
PPN: 510355447
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen