TU Darmstadt / ULB / TUbiblio

Direct recognition of crystal structures via three-dimensional convolutional neural networks with high accuracy and tolerance to random displacements and missing atoms

Rao, Ziyuan ; Li, Yue ; Zhang, Hongbin ; Colnaghi, Timoteo ; Marek, Andreas ; Rampp, Markus ; Gault, Baptiste (2023)
Direct recognition of crystal structures via three-dimensional convolutional neural networks with high accuracy and tolerance to random displacements and missing atoms.
In: Scripta Materialia, 234
doi: 10.1016/j.scriptamat.2023.115542
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Computational methods and machine learning algorithms for automatic information extraction are crucial to enable data-driven materials science. These approaches are changing materials characterization and analytics, which often require a user-specified threshold to e.g. detect structure or symmetries in structures with defects. Here, we present a machine learning-based approach that directly works on the original periodic arrangements of atoms based on a three-dimensional convolutional neural network without any transformation of descriptors. Our approach shows a high classification accuracy and tolerance to the presence of random displacements and missing atoms. Experimentally, we successfully reconstruct the ordered L12 precipitates extracted from atom probe tomography data, consistent with segmentation based on isocomposition surfaces. The convolutional layers are essential for the simultaneous identification of compositional and structural information, which also give rise to its high tolerance. Our work advances machine learning-based crystal structure identification for incomplete crystal structural data.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Rao, Ziyuan ; Li, Yue ; Zhang, Hongbin ; Colnaghi, Timoteo ; Marek, Andreas ; Rampp, Markus ; Gault, Baptiste
Art des Eintrags: Bibliographie
Titel: Direct recognition of crystal structures via three-dimensional convolutional neural networks with high accuracy and tolerance to random displacements and missing atoms
Sprache: Englisch
Publikationsjahr: 2023
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scripta Materialia
Jahrgang/Volume einer Zeitschrift: 234
DOI: 10.1016/j.scriptamat.2023.115542
Kurzbeschreibung (Abstract):

Computational methods and machine learning algorithms for automatic information extraction are crucial to enable data-driven materials science. These approaches are changing materials characterization and analytics, which often require a user-specified threshold to e.g. detect structure or symmetries in structures with defects. Here, we present a machine learning-based approach that directly works on the original periodic arrangements of atoms based on a three-dimensional convolutional neural network without any transformation of descriptors. Our approach shows a high classification accuracy and tolerance to the presence of random displacements and missing atoms. Experimentally, we successfully reconstruct the ordered L12 precipitates extracted from atom probe tomography data, consistent with segmentation based on isocomposition surfaces. The convolutional layers are essential for the simultaneous identification of compositional and structural information, which also give rise to its high tolerance. Our work advances machine learning-based crystal structure identification for incomplete crystal structural data.

Zusätzliche Informationen:

This work was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 405553726 – TRR 270 and the funding from the DFG contract GA 2450/2–1. Y. Li acknowledges the research fellowship provided by the Alexander von Humboldt Foundation. This research received funding from BiGmax, the Max Planck Society's Research Network on Big-Data-Driven Materials Science.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 27 Jul 2023 12:02
Letzte Änderung: 27 Jul 2023 12:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen