TU Darmstadt / ULB / TUbiblio

Designing magnetocaloric materials for hydrogen liquefaction with light rare-earth Laves phases

Liu, Wei ; Gottschall, Tino ; Scheibel, Franziska ; Bykov, Eduard ; Fortunato, Nuno ; Aubert, Alex ; Zhang, Hongbin ; Skokov, Konstantin P. ; Gutfleisch, Oliver (2023)
Designing magnetocaloric materials for hydrogen liquefaction with light rare-earth Laves phases.
In: Journal of Physics: Energy, 5 (3)
doi: 10.1088/2515-7655/accb0b
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Magnetocaloric hydrogen liquefaction could be a 'game-changer' for liquid hydrogen industry. Although heavy rare-earth based magnetocaloric materials show strong magnetocaloric effects in the temperature range required by hydrogen liquefaction (77–20 K), the high resource criticality of the heavy rare-earth elements is a major obstacle for upscaling this emerging liquefaction technology. In contrast, the higher abundances of the light rare-earth elements make their alloys highly appealing for magnetocaloric hydrogen liquefaction. Via a mean-field approach, it is demonstrated that tuning the Curie temperature (TC) of an idealized light rare-earth based magnetocaloric material towards lower cryogenic temperatures leads to larger maximum magnetic and adiabatic temperature changes (ΔST and ΔTad). Especially in the vicinity of the condensation point of hydrogen (20 K), ΔST and ΔTad of the optimized light rare-earth based material are predicted to show significantly large values. Following the mean-field approach and taking the chemical and physical similarities of the light rare-earth elements into consideration, a method of designing light rare-earth intermetallic compounds for hydrogen liquefaction is used: tuning TC of a rare-earth alloy to approach 20 K by mixing light rare-earth elements with different de Gennes factors. By mixing Nd and Pr in Laves phase (Nd, Pr)Al2, and Pr and Ce in Laves phase (Pr, Ce)Al2, a fully light rare-earth intermetallic series with large magnetocaloric effects covering the temperature range required by hydrogen liquefaction is developed, demonstrating a competitive maximum effect compared to the heavy rare-earth compound DyAl2.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Liu, Wei ; Gottschall, Tino ; Scheibel, Franziska ; Bykov, Eduard ; Fortunato, Nuno ; Aubert, Alex ; Zhang, Hongbin ; Skokov, Konstantin P. ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: Designing magnetocaloric materials for hydrogen liquefaction with light rare-earth Laves phases
Sprache: Englisch
Publikationsjahr: 5 Mai 2023
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics: Energy
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 3
DOI: 10.1088/2515-7655/accb0b
URL / URN: https://iopscience.iop.org/article/10.1088/2515-7655/accb0b
Kurzbeschreibung (Abstract):

Magnetocaloric hydrogen liquefaction could be a 'game-changer' for liquid hydrogen industry. Although heavy rare-earth based magnetocaloric materials show strong magnetocaloric effects in the temperature range required by hydrogen liquefaction (77–20 K), the high resource criticality of the heavy rare-earth elements is a major obstacle for upscaling this emerging liquefaction technology. In contrast, the higher abundances of the light rare-earth elements make their alloys highly appealing for magnetocaloric hydrogen liquefaction. Via a mean-field approach, it is demonstrated that tuning the Curie temperature (TC) of an idealized light rare-earth based magnetocaloric material towards lower cryogenic temperatures leads to larger maximum magnetic and adiabatic temperature changes (ΔST and ΔTad). Especially in the vicinity of the condensation point of hydrogen (20 K), ΔST and ΔTad of the optimized light rare-earth based material are predicted to show significantly large values. Following the mean-field approach and taking the chemical and physical similarities of the light rare-earth elements into consideration, a method of designing light rare-earth intermetallic compounds for hydrogen liquefaction is used: tuning TC of a rare-earth alloy to approach 20 K by mixing light rare-earth elements with different de Gennes factors. By mixing Nd and Pr in Laves phase (Nd, Pr)Al2, and Pr and Ce in Laves phase (Pr, Ce)Al2, a fully light rare-earth intermetallic series with large magnetocaloric effects covering the temperature range required by hydrogen liquefaction is developed, demonstrating a competitive maximum effect compared to the heavy rare-earth compound DyAl2.

Zusätzliche Informationen:

Artikel-ID: 034001

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 04 Okt 2023 12:20
Letzte Änderung: 04 Okt 2023 12:20
PPN: 51203222X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen