TU Darmstadt / ULB / TUbiblio

Efficient Methods for Natural Language Processing: A Survey

Treviso, Marcos ; Lee, Ji-Ung ; Ji, Tianchu ; Aken, Betty van ; Cao, Qingqing ; Ciosici, Manuel R. ; Hassid, Michael ; Heafield, Kenneth ; Hooker, Sara ; Raffel, Colin ; Martins, Pedro H. ; Martins, André F. T. ; Forde, Jessica Zosa ; Milder, Peter Milder ; Simpson, Edwin ; Slonim, Noam ; Dodge, Jesse ; Strubell, Emma ; Balasubramaniam, Niranjan ; Derczynski, Leon ; Gurevych, Iryna ; Schwartz, Roy (2023)
Efficient Methods for Natural Language Processing: A Survey.
In: Transactions of the Association for Computational Linguistics, 11
doi: 10.1162/tacl_a_00577
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Treviso, Marcos ; Lee, Ji-Ung ; Ji, Tianchu ; Aken, Betty van ; Cao, Qingqing ; Ciosici, Manuel R. ; Hassid, Michael ; Heafield, Kenneth ; Hooker, Sara ; Raffel, Colin ; Martins, Pedro H. ; Martins, André F. T. ; Forde, Jessica Zosa ; Milder, Peter Milder ; Simpson, Edwin ; Slonim, Noam ; Dodge, Jesse ; Strubell, Emma ; Balasubramaniam, Niranjan ; Derczynski, Leon ; Gurevych, Iryna ; Schwartz, Roy
Art des Eintrags: Bibliographie
Titel: Efficient Methods for Natural Language Processing: A Survey
Sprache: Englisch
Publikationsjahr: 12 Juli 2023
Verlag: MIT Press
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Transactions of the Association for Computational Linguistics
Jahrgang/Volume einer Zeitschrift: 11
DOI: 10.1162/tacl_a_00577
Kurzbeschreibung (Abstract):

Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 25 Jul 2023 11:49
Letzte Änderung: 26 Jul 2023 10:26
PPN: 509928870
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen