Dycke, Nils ; Kuznetsov, Ilia ; Gurevych, Iryna (2023)
NLPeer: A Unified Resource for the Computational Study of Peer Review.
61st Annual Meeting of the Association for Computational Linguistics. Toronto, Canada (09.07.2023-14.07.2023)
Konferenzveröffentlichung, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Peer review constitutes a core component of scholarly publishing; yet it demands substantial expertise and training, and is susceptible to errors and biases. Various applications of NLP for peer reviewing assistance aim to support reviewers in this complex process, but the lack of clearly licensed datasets and multi-domain corpora prevent the systematic study of NLP for peer review. To remedy this, we introduce NLPeer– the first ethically sourced multidomain corpus of more than 5k papers and 11k review reports from five different venues. In addition to the new datasets of paper drafts, camera-ready versions and peer reviews from the NLP community, we establish a unified data representation and augment previous peer review datasets to include parsed and structured paper representations, rich metadata and versioning information. We complement our resource with implementations and analysis of three reviewing assistance tasks, including a novel guided skimming task.Our work paves the path towards systematic, multi-faceted, evidence-based study of peer review in NLP and beyond. The data and code are publicly available.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Dycke, Nils ; Kuznetsov, Ilia ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | NLPeer: A Unified Resource for the Computational Study of Peer Review |
Sprache: | Englisch |
Publikationsjahr: | 10 Juli 2023 |
Verlag: | ACL |
Buchtitel: | The 61st Annual Meeting of the Association for Computational Linguistics: Proceedings of the Conference Volume 1: Long Papers |
Veranstaltungstitel: | 61st Annual Meeting of the Association for Computational Linguistics |
Veranstaltungsort: | Toronto, Canada |
Veranstaltungsdatum: | 09.07.2023-14.07.2023 |
URL / URN: | https://aclanthology.org/2023.acl-long.277/ |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Peer review constitutes a core component of scholarly publishing; yet it demands substantial expertise and training, and is susceptible to errors and biases. Various applications of NLP for peer reviewing assistance aim to support reviewers in this complex process, but the lack of clearly licensed datasets and multi-domain corpora prevent the systematic study of NLP for peer review. To remedy this, we introduce NLPeer– the first ethically sourced multidomain corpus of more than 5k papers and 11k review reports from five different venues. In addition to the new datasets of paper drafts, camera-ready versions and peer reviews from the NLP community, we establish a unified data representation and augment previous peer review datasets to include parsed and structured paper representations, rich metadata and versioning information. We complement our resource with implementations and analysis of three reviewing assistance tasks, including a novel guided skimming task.Our work paves the path towards systematic, multi-faceted, evidence-based study of peer review in NLP and beyond. The data and code are publicly available. |
Freie Schlagworte: | UKP_p_seditrah_QABioLit,UKP_p_PEER,UKP_p_InterText |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 25 Jul 2023 11:47 |
Letzte Änderung: | 18 Jul 2024 07:09 |
PPN: | 509928102 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
NLPeer: A Unified Resource for the Computational Study of Peer Review. (deposited 16 Jul 2024 12:16)
- NLPeer: A Unified Resource for the Computational Study of Peer Review. (deposited 25 Jul 2023 11:47) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |