TU Darmstadt / ULB / TUbiblio

An Inclusive Notion of Text

Kuznetsov, Ilia ; Gurevych, Iryna (2023)
An Inclusive Notion of Text.
61st Annual Meeting of the Association for Computational Linguistics. Toronto, Canada (09.07.2023-14.07.2023)
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Natural language processing (NLP) researchers develop models of grammar, meaning and communication based on written text. Due to task and data differences, what is considered text can vary substantially across studies. A conceptual framework for systematically capturing these differences is lacking. We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP. Towards that goal, we propose common terminology to discuss the production and transformation of textual data, and introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling. We apply this taxonomy to survey existing work that extends the notion of text beyond the conservative language-centered view. We outline key desiderata and challenges of the emerging inclusive approach to text in NLP, and suggest community-level reporting as a crucial next step to consolidate the discussion.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Kuznetsov, Ilia ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: An Inclusive Notion of Text
Sprache: Englisch
Publikationsjahr: 10 Juli 2023
Verlag: ACL
Buchtitel: The 61st Annual Meeting of the Association for Computational Linguistics: Proceedings of the Conference Volume 1: Long Papers
Veranstaltungstitel: 61st Annual Meeting of the Association for Computational Linguistics
Veranstaltungsort: Toronto, Canada
Veranstaltungsdatum: 09.07.2023-14.07.2023
URL / URN: https://aclanthology.org/2023.acl-long.633/
Kurzbeschreibung (Abstract):

Natural language processing (NLP) researchers develop models of grammar, meaning and communication based on written text. Due to task and data differences, what is considered text can vary substantially across studies. A conceptual framework for systematically capturing these differences is lacking. We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP. Towards that goal, we propose common terminology to discuss the production and transformation of textual data, and introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling. We apply this taxonomy to survey existing work that extends the notion of text beyond the conservative language-centered view. We outline key desiderata and challenges of the emerging inclusive approach to text in NLP, and suggest community-level reporting as a crucial next step to consolidate the discussion.

Freie Schlagworte: UKP_p_LOEWE_Spitzenprofessur, UKP_p_InterText
Zusätzliche Informationen:

Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 09 Aug 2023 09:39
Letzte Änderung: 09 Jul 2024 09:23
PPN: 510577407
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen