TU Darmstadt / ULB / TUbiblio

A Dataset of Argumentative Dialogues on Scientific Papers

Ruggeri, Federico ; Mesgar, Mohsen ; Gurevych, Iryna (2023)
A Dataset of Argumentative Dialogues on Scientific Papers.
61st Annual Meeting of the Association for Computational Linguistics. Toronto, Canada (09.07.2023-14.07.2023)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

With recent advances in question-answering models, various datasets have been collected to improve and study the effectiveness of these models on scientific texts. Questions and answers in these datasets explore a scientific paper by seeking factual information from the paper’s content. However, these datasets do not tackle the argumentative content of scientific papers, which is of huge importance in persuasiveness of a scientific discussion. We introduce ArgSciChat, a dataset of 41 argumentative dialogues between scientists on 20 NLP papers. The unique property of our dataset is that it includes both exploratory and argumentative questions and answers in a dialogue discourse on a scientific paper. Moreover, the size of ArgSciChat demonstrates the difficulties in collecting dialogues for specialized domains.Thus, our dataset is a challenging resource to evaluate dialogue agents in low-resource domains, in which collecting training data is costly. We annotate all sentences of dialogues in ArgSciChat and analyze them extensively. The results confirm that dialogues in ArgSciChat include exploratory and argumentative interactions. Furthermore, we use our dataset to fine-tune and evaluate a pre-trained document-grounded dialogue agent. The agent achieves a low performance on our dataset, motivating a need for dialogue agents with a capability to reason and argue about their answers. We publicly release ArgSciChat.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Ruggeri, Federico ; Mesgar, Mohsen ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: A Dataset of Argumentative Dialogues on Scientific Papers
Sprache: Englisch
Publikationsjahr: 10 Juli 2023
Verlag: ACL
Buchtitel: The 61st Annual Meeting of the Association for Computational Linguistics: Proceedings of the Conference Volume 1: Long Papers
Veranstaltungstitel: 61st Annual Meeting of the Association for Computational Linguistics
Veranstaltungsort: Toronto, Canada
Veranstaltungsdatum: 09.07.2023-14.07.2023
URL / URN: https://aclanthology.org/2023.acl-long.425/
Kurzbeschreibung (Abstract):

With recent advances in question-answering models, various datasets have been collected to improve and study the effectiveness of these models on scientific texts. Questions and answers in these datasets explore a scientific paper by seeking factual information from the paper’s content. However, these datasets do not tackle the argumentative content of scientific papers, which is of huge importance in persuasiveness of a scientific discussion. We introduce ArgSciChat, a dataset of 41 argumentative dialogues between scientists on 20 NLP papers. The unique property of our dataset is that it includes both exploratory and argumentative questions and answers in a dialogue discourse on a scientific paper. Moreover, the size of ArgSciChat demonstrates the difficulties in collecting dialogues for specialized domains.Thus, our dataset is a challenging resource to evaluate dialogue agents in low-resource domains, in which collecting training data is costly. We annotate all sentences of dialogues in ArgSciChat and analyze them extensively. The results confirm that dialogues in ArgSciChat include exploratory and argumentative interactions. Furthermore, we use our dataset to fine-tune and evaluate a pre-trained document-grounded dialogue agent. The agent achieves a low performance on our dataset, motivating a need for dialogue agents with a capability to reason and argue about their answers. We publicly release ArgSciChat.

Freie Schlagworte: UKP_p_qa_sci_inf, UKP_p_LOEWE_Spitzenprofessur
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 07 Aug 2023 10:46
Letzte Änderung: 07 Aug 2023 14:51
PPN: 510424120
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen