Fasce, Angelo ; Schmid, Philipp ; Holford, Dawn L. ; Bates, Luke ; Gurevych, Iryna ; Lewandowsky, Stephan (2023)
A taxonomy of anti-vaccination arguments from a systematic literature review and text modelling.
In: Nature Human Behaviour, 2023
doi: 10.1038/s41562-023-01644-3
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The proliferation of anti-vaccination arguments is a threat to the success of many immunization programmes. Effective rebuttal of contrarian arguments requires an approach that goes beyond addressing flaws in the arguments, by also considering the attitude roots—that is, the underlying psychological attributes driving a person’s belief—of opposition to vaccines. Here, through a pre-registered systematic literature review of 152 scientific articles and thematic analysis of anti-vaccination arguments, we developed a hierarchical taxonomy that relates common arguments and themes to 11 attitude roots that explain why an individual might express opposition to vaccination. We further validated our taxonomy on coronavirus disease 2019 anti-vaccination misinformation, through a combination of human coding and machine learning using natural language processing algorithms. Overall, the taxonomy serves as a theoretical framework to link expressed opposition of vaccines to their underlying psychological processes. This enables future work to develop targeted rebuttals and other interventions that address the underlying motives of anti-vaccination arguments.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Fasce, Angelo ; Schmid, Philipp ; Holford, Dawn L. ; Bates, Luke ; Gurevych, Iryna ; Lewandowsky, Stephan |
Art des Eintrags: | Bibliographie |
Titel: | A taxonomy of anti-vaccination arguments from a systematic literature review and text modelling |
Sprache: | Englisch |
Publikationsjahr: | 17 Juli 2023 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Nature Human Behaviour |
Jahrgang/Volume einer Zeitschrift: | 2023 |
DOI: | 10.1038/s41562-023-01644-3 |
Kurzbeschreibung (Abstract): | The proliferation of anti-vaccination arguments is a threat to the success of many immunization programmes. Effective rebuttal of contrarian arguments requires an approach that goes beyond addressing flaws in the arguments, by also considering the attitude roots—that is, the underlying psychological attributes driving a person’s belief—of opposition to vaccines. Here, through a pre-registered systematic literature review of 152 scientific articles and thematic analysis of anti-vaccination arguments, we developed a hierarchical taxonomy that relates common arguments and themes to 11 attitude roots that explain why an individual might express opposition to vaccination. We further validated our taxonomy on coronavirus disease 2019 anti-vaccination misinformation, through a combination of human coding and machine learning using natural language processing algorithms. Overall, the taxonomy serves as a theoretical framework to link expressed opposition of vaccines to their underlying psychological processes. This enables future work to develop targeted rebuttals and other interventions that address the underlying motives of anti-vaccination arguments. |
Freie Schlagworte: | UKP_p_seditrah_factcheck |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 25 Jul 2023 07:41 |
Letzte Änderung: | 26 Jul 2023 09:09 |
PPN: | 509925820 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |