TU Darmstadt / ULB / TUbiblio

UKP-SQuARE v3: A Platform for Multi-Agent QA Research

Puerto, Haritz ; Baumgärtner, Tim ; Sachdeva, Rachneet ; Fang, Haishuo ; Zhang, Hao ; Tariverdian, Sewin ; Wang, Kexin ; Gurevych, Iryna (2023)
UKP-SQuARE v3: A Platform for Multi-Agent QA Research.
61st Annual Meeting of the Association for Computational Linguistics. Toronto, Canada (10.07.2023-12.07.2023)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The continuous development of Question Answering (QA) datasets has drawn the research community’s attention toward multi-domain models. A popular approach is to use multi-dataset models, which are models trained on multiple datasets to learn their regularities and prevent overfitting to a single dataset. However, with the proliferation of QA models in online repositories such as GitHub or Hugging Face, an alternative is becoming viable. Recent works have demonstrated that combining expert agents can yield large performance gains over multi-dataset models. To ease research in multi-agent models, we extend UKP-SQuARE, an online platform for QA research, to support three families of multi-agent systems: i) agent selection, ii) early-fusion of agents, and iii) late-fusion of agents. We conduct experiments to evaluate their inference speed and discuss the performance vs. speed trade-off compared to multi-dataset models. UKP-SQuARE is open-source and publicly available.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Puerto, Haritz ; Baumgärtner, Tim ; Sachdeva, Rachneet ; Fang, Haishuo ; Zhang, Hao ; Tariverdian, Sewin ; Wang, Kexin ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: UKP-SQuARE v3: A Platform for Multi-Agent QA Research
Sprache: Englisch
Publikationsjahr: 10 Juli 2023
Verlag: ACL
Buchtitel: The 61st Annual Meeting of the Association for Computational Linguistics: Proceedings of the Conference Volume 3: System Demonstrations
Veranstaltungstitel: 61st Annual Meeting of the Association for Computational Linguistics
Veranstaltungsort: Toronto, Canada
Veranstaltungsdatum: 10.07.2023-12.07.2023
URL / URN: https://aclanthology.org/2023.acl-demo.55
Kurzbeschreibung (Abstract):

The continuous development of Question Answering (QA) datasets has drawn the research community’s attention toward multi-domain models. A popular approach is to use multi-dataset models, which are models trained on multiple datasets to learn their regularities and prevent overfitting to a single dataset. However, with the proliferation of QA models in online repositories such as GitHub or Hugging Face, an alternative is becoming viable. Recent works have demonstrated that combining expert agents can yield large performance gains over multi-dataset models. To ease research in multi-agent models, we extend UKP-SQuARE, an online platform for QA research, to support three families of multi-agent systems: i) agent selection, ii) early-fusion of agents, and iii) late-fusion of agents. We conduct experiments to evaluate their inference speed and discuss the performance vs. speed trade-off compared to multi-dataset models. UKP-SQuARE is open-source and publicly available.

Freie Schlagworte: UKP_p_square, UKP_p_qa_sci_inf
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 26 Jul 2023 07:57
Letzte Änderung: 27 Jul 2023 10:23
PPN: 509978096
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen