TU Darmstadt / ULB / TUbiblio

Arithmetic-Based Pretraining Improving Numeracy of Pretrained Language Models

Petrak, Dominic ; Moosavi, Nafise Sadat ; Gurevych, Iryna (2023)
Arithmetic-Based Pretraining Improving Numeracy of Pretrained Language Models.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

State-of-the-art pretrained language models tend to perform below their capabilities when applied out-of-the-box on tasks that require understanding and working with numbers (usually referred to as numeracy). Recent work suggests two main reasons for this: (1) popular tokenisation algorithms have limited expressiveness for numbers, and (2) common pretraining objectives do not target numeracy. Approaches that address these shortcomings usually require architectural changes or pretraining from scratch. In this paper, we propose a new extended pretraining approach called Arithmetic-Based Pretraining that jointly addresses both in one extended pretraining step without requiring architectural changes or pretraining from scratch. Arithmetic-Based Pretraining combines contrastive learning to improve the number representation, and a novel extended pretraining objective called Inferable Number Prediction Task to improve numeracy. Our experiments show the effectiveness of Arithmetic-Based Pretraining in three different tasks that require improved numeracy, i.e., reading comprehension in the DROP dataset, inference-on-tables in the InfoTabs dataset, and table-to-text generation in the WikiBio and SciGen datasets.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Petrak, Dominic ; Moosavi, Nafise Sadat ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Arithmetic-Based Pretraining Improving Numeracy of Pretrained Language Models
Sprache: Englisch
Publikationsjahr: 10 Juli 2023
Ort: Toronto, Canada
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)
URL / URN: https://aclanthology.org/2023.starsem-1.42/
Kurzbeschreibung (Abstract):

State-of-the-art pretrained language models tend to perform below their capabilities when applied out-of-the-box on tasks that require understanding and working with numbers (usually referred to as numeracy). Recent work suggests two main reasons for this: (1) popular tokenisation algorithms have limited expressiveness for numbers, and (2) common pretraining objectives do not target numeracy. Approaches that address these shortcomings usually require architectural changes or pretraining from scratch. In this paper, we propose a new extended pretraining approach called Arithmetic-Based Pretraining that jointly addresses both in one extended pretraining step without requiring architectural changes or pretraining from scratch. Arithmetic-Based Pretraining combines contrastive learning to improve the number representation, and a novel extended pretraining objective called Inferable Number Prediction Task to improve numeracy. Our experiments show the effectiveness of Arithmetic-Based Pretraining in three different tasks that require improved numeracy, i.e., reading comprehension in the DROP dataset, inference-on-tables in the InfoTabs dataset, and table-to-text generation in the WikiBio and SciGen datasets.

Freie Schlagworte: UKP_p_crisp_senpai, UKP_p_INCEpTION
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 30 Aug 2023 11:48
Letzte Änderung: 30 Aug 2023 11:59
PPN: 511164742
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen