TU Darmstadt / ULB / TUbiblio

Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads

Lutsch, Adrian ; Singh, Gagandeep ; Mundt, Martin ; Mogk, Ragnar ; Binnig, Carsten
Hrsg.: König-Ries, Birgitta ; Scherzinger, Stefanie ; Lehner, Wolfgang ; Vossen, Gottfried (2023)
Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads.
20. Fachtagung des GI-Fachbereichs ,,Datenbanken und Informationssysteme" (DBIS). Dresden, Germany (06.03.2023-10.03.2023)
doi: 10.18420/BTW2023-44
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

For domains with high data privacy and protection demands, such as health care and finance, outsourcing machine learning tasks often requires additional security measures. Trusted Execution Environments like Intel SGX are a powerful tool to achieve this additional security. Until recently, Intel SGX incurred high performance costs, mainly because it was severely limited in terms of available memory and CPUs. With the second generation of SGX, Intel alleviates these problems. Therefore, we revisit previous use cases for ML secured by SGX and show initial results of a performance study for ML workloads on SGXv2.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Herausgeber: König-Ries, Birgitta ; Scherzinger, Stefanie ; Lehner, Wolfgang ; Vossen, Gottfried
Autor(en): Lutsch, Adrian ; Singh, Gagandeep ; Mundt, Martin ; Mogk, Ragnar ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads
Sprache: Englisch
Publikationsjahr: 10 März 2023
Verlag: Gesellschaft für Informatik e.V.
Buchtitel: Datenbanksysteme für Business, Technologie und Web (BTW 2023)
Reihe: Lecture Notes in Informatics
Band einer Reihe: P-331
Veranstaltungstitel: 20. Fachtagung des GI-Fachbereichs ,,Datenbanken und Informationssysteme" (DBIS)
Veranstaltungsort: Dresden, Germany
Veranstaltungsdatum: 06.03.2023-10.03.2023
DOI: 10.18420/BTW2023-44
Kurzbeschreibung (Abstract):

For domains with high data privacy and protection demands, such as health care and finance, outsourcing machine learning tasks often requires additional security measures. Trusted Execution Environments like Intel SGX are a powerful tool to achieve this additional security. Until recently, Intel SGX incurred high performance costs, mainly because it was severely limited in terms of available memory and CPUs. With the second generation of SGX, Intel alleviates these problems. Therefore, we revisit previous use cases for ML secured by SGX and show initial results of a performance study for ML workloads on SGXv2.

Freie Schlagworte: systems_funding_50100474, systems_bmwk_safefbdc
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
Hinterlegungsdatum: 24 Jul 2023 13:03
Letzte Änderung: 25 Jul 2023 15:55
PPN: 509917801
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen