TU Darmstadt / ULB / TUbiblio

A Scalable AI Training Platform for Remote Sensing Data

Würz, Hendrik M. ; Kocon, Kevin ; Pedretscher, Barbara ; Klien, Eva ; Eggeling, Eva (2023)
A Scalable AI Training Platform for Remote Sensing Data.
In: AGILE: GIScience Series, 4
doi: 10.5194/agile-giss-4-53-2023
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We present a platform to support the AI development lifecycle with focus on large data like remote sensing.We target developers who are not allowed to use existing commercial cloud platforms for legal reasons or data compliance. The flexible implementation of our platform enables a deployment on classic server infrastructures as well as on internal clouds. Our goals of scalable and resource-efficient execution, independence from specific AI frameworks and programming languages, as well as reproducibility of results are met through a workflow-based calculation combined with the tool Data Version Control. The capabilities of the platform are demonstrated by training an AI-based forest type classification.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Würz, Hendrik M. ; Kocon, Kevin ; Pedretscher, Barbara ; Klien, Eva ; Eggeling, Eva
Art des Eintrags: Bibliographie
Titel: A Scalable AI Training Platform for Remote Sensing Data
Sprache: Englisch
Publikationsjahr: 6 Juni 2023
Ort: k.A.
Verlag: Copernicus Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: AGILE: GIScience Series
Jahrgang/Volume einer Zeitschrift: 4
DOI: 10.5194/agile-giss-4-53-2023
Kurzbeschreibung (Abstract):

We present a platform to support the AI development lifecycle with focus on large data like remote sensing.We target developers who are not allowed to use existing commercial cloud platforms for legal reasons or data compliance. The flexible implementation of our platform enables a deployment on classic server infrastructures as well as on internal clouds. Our goals of scalable and resource-efficient execution, independence from specific AI frameworks and programming languages, as well as reproducibility of results are met through a workflow-based calculation combined with the tool Data Version Control. The capabilities of the platform are demonstrated by training an AI-based forest type classification.

Freie Schlagworte: Artificial intelligence (AI), Workflow management, Cloud computing, Remote sensing
Zusätzliche Informationen:

Issue to 26th AGILE Conference on Geographic Information Science “Spatial data for design”, Delft, the Netherlands, 13.-16.06.2023 ; Art.No.: 53

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 19 Jul 2023 07:30
Letzte Änderung: 19 Jul 2023 12:22
PPN: 509800416
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen