TU Darmstadt / ULB / TUbiblio

Uncertainty-aware Comparison Scores for Face Recognition

Huber, Marco ; Terhörst, Philipp ; Kirchbuchner, Florian ; Kuijper, Arjan ; Damer, Naser (2023)
Uncertainty-aware Comparison Scores for Face Recognition.
11th International Workshop on Biometrics and Forensics. Barcelona, Spain (19.04.2023-20.04.2023)
doi: 10.1109/IWBF57495.2023.10157282
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Estimating and understanding uncertainty in face recognition systems is receiving increasing attention as face recognition systems spread worldwide and process privacy and security-related data. In this work, we investigate how such uncertainties can be further utilized to increase the accuracy and therefore the trust of automatic face recognition systems. We propose to use the uncertainties of extracted face features to compute a new uncertainty-aware comparison score (UACS). This score takes into account the estimated uncertainty during the calculation of the comparison score, leading to a reduction in verification errors. To achieve this, we model the comparison score and its uncertainty as a probability distribution and measure its distance to a distribution of an ideal genuine comparison. In extended experiments with three face recognition models and on six benchmarks, we investigated the impact of our approach and demonstrated its benefits in enhancing the verification performance and the genuine-imposter comparison scores separability.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Huber, Marco ; Terhörst, Philipp ; Kirchbuchner, Florian ; Kuijper, Arjan ; Damer, Naser
Art des Eintrags: Bibliographie
Titel: Uncertainty-aware Comparison Scores for Face Recognition
Sprache: Englisch
Publikationsjahr: 23 Juni 2023
Verlag: IEEE
Buchtitel: 2023 11th International Workshop on Biometrics and Forensics (IWBF)
Veranstaltungstitel: 11th International Workshop on Biometrics and Forensics
Veranstaltungsort: Barcelona, Spain
Veranstaltungsdatum: 19.04.2023-20.04.2023
DOI: 10.1109/IWBF57495.2023.10157282
Kurzbeschreibung (Abstract):

Estimating and understanding uncertainty in face recognition systems is receiving increasing attention as face recognition systems spread worldwide and process privacy and security-related data. In this work, we investigate how such uncertainties can be further utilized to increase the accuracy and therefore the trust of automatic face recognition systems. We propose to use the uncertainties of extracted face features to compute a new uncertainty-aware comparison score (UACS). This score takes into account the estimated uncertainty during the calculation of the comparison score, leading to a reduction in verification errors. To achieve this, we model the comparison score and its uncertainty as a probability distribution and measure its distance to a distribution of an ideal genuine comparison. In extended experiments with three face recognition models and on six benchmarks, we investigated the impact of our approach and demonstrated its benefits in enhancing the verification performance and the genuine-imposter comparison scores separability.

Freie Schlagworte: Biometrics, Face recognition, Machine learning, Deep learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 19 Jul 2023 07:20
Letzte Änderung: 19 Jul 2023 07:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen