Riedel, Ralf (2023)
High-pressure materials synthesis - A guideline for the discovery of advanced ceramic nitrides.
In: Ceramics International, 49 (14)
doi: 10.1016/j.ceramint.2022.10.052
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
High-pressure synthesis routes enable the access to a broad variety of novel nitride-based materials with properties far beyond that of the state of the art. The ultimate goal of our studies is to advance the knowledge and understanding of inorganic nitrides, oxynitrides and nitride-based (nano)composites synthesized under high-pressure and high temperature conditions. The discovery of novel nitrides will open space for new fundamental materials science studies on the one hand and application-oriented research on the other hand. Our research is part of the materials driven technology, which is an essential requirement for the future demands with respect to the development of new technologies. Binary, ternary and multinary nitrides or oxynitrides are in the focus of our studies. Theoretical predictions of novel metal or non-metal nitride solid-state structures guide the experimental studies. The use of a large volume press allows to produce new materials in amounts suitable for further mechanical and functional characterization. Molecular single source precursors are synthesized and transformed to inorganic solid nitrides as starting materials. Special emphasis is placed on (i) fundamental questions regarding pressure-temperature phase relations, (ii) nitrides, which have been predicted but not synthesized yet, and (iii) nitride-based (nano)composites which combine at least two binary high-pressure phases in one material. The novel nitrides are evaluated in terms of their challenging and technologically relevant properties including (i) thermodynamic stability/metastability and (ii) structural (hardness) as well as functional (optoelectronic) properties. Finally, our research contributes to extend the "Nitride World" and to deliver perspective materials based on the inorganic nitride family with advanced functionality and exceptional levels of performance for application in the key technologies of the 21st century.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Riedel, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | High-pressure materials synthesis - A guideline for the discovery of advanced ceramic nitrides |
Sprache: | Englisch |
Publikationsjahr: | 15 Juli 2023 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Ceramics International |
Jahrgang/Volume einer Zeitschrift: | 49 |
(Heft-)Nummer: | 14 |
DOI: | 10.1016/j.ceramint.2022.10.052 |
Kurzbeschreibung (Abstract): | High-pressure synthesis routes enable the access to a broad variety of novel nitride-based materials with properties far beyond that of the state of the art. The ultimate goal of our studies is to advance the knowledge and understanding of inorganic nitrides, oxynitrides and nitride-based (nano)composites synthesized under high-pressure and high temperature conditions. The discovery of novel nitrides will open space for new fundamental materials science studies on the one hand and application-oriented research on the other hand. Our research is part of the materials driven technology, which is an essential requirement for the future demands with respect to the development of new technologies. Binary, ternary and multinary nitrides or oxynitrides are in the focus of our studies. Theoretical predictions of novel metal or non-metal nitride solid-state structures guide the experimental studies. The use of a large volume press allows to produce new materials in amounts suitable for further mechanical and functional characterization. Molecular single source precursors are synthesized and transformed to inorganic solid nitrides as starting materials. Special emphasis is placed on (i) fundamental questions regarding pressure-temperature phase relations, (ii) nitrides, which have been predicted but not synthesized yet, and (iii) nitride-based (nano)composites which combine at least two binary high-pressure phases in one material. The novel nitrides are evaluated in terms of their challenging and technologically relevant properties including (i) thermodynamic stability/metastability and (ii) structural (hardness) as well as functional (optoelectronic) properties. Finally, our research contributes to extend the "Nitride World" and to deliver perspective materials based on the inorganic nitride family with advanced functionality and exceptional levels of performance for application in the key technologies of the 21st century. |
Freie Schlagworte: | crystal-structure determination, source-precursor synthesis, single source precursors, phosphorus (v) nitride, nanocomposites, phase, semiconducturs, evolution, platinum, P3N5 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe |
Hinterlegungsdatum: | 17 Jul 2023 07:18 |
Letzte Änderung: | 17 Jul 2023 07:18 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |