TU Darmstadt / ULB / TUbiblio

Elucidating the local structure of V substitutes in In2S3 as potential intermediate band material by x-ray absorption spectroscopy and first principles calculations

Ghorbani, Elaheh ; Schiller, Martin ; Falk, Hans H. ; Wägele, Leonard A. ; Eckner, Stefanie ; d’Acapito, Francesco ; Scheer, Roland ; Albe, Karsten ; Schnohr, Claudia S. (2023)
Elucidating the local structure of V substitutes in In2S3 as potential intermediate band material by x-ray absorption spectroscopy and first principles calculations.
In: Journal of Physics: Energy, 5 (3)
doi: 10.1088/2515-7655/acd95b
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Vanadium doped indium sulphide, In2S3:V, is studied as a potential absorber material for intermediate band (IB) solar cells. Based on electronic considerations, it is usually assumed that V occupies octahedrally coordinated In sites, although geometrical considerations would favour tetrahedral In sites. In this study, we therefore combined experimental x-ray diffraction and x-ray absorption spectroscopy with ab initio theoretical calculations of both $\mathrm{\alpha}$ and $\mathrm{\beta}$ phase to elucidate the incorporation of V in In2S3:V thin films grown with different V content and different growth temperatures. Comparing shape and position of the measured and calculated x-ray absorption edge of V, comparing experimentally determined and calculated V–S bond lengths, and evaluating the calculated heat of solution of V on different lattice sites all indicate that V is incorporated on octahedral rather than tetrahedral sites in the In2S3 matrix. For this material system, the electronic benefit of octahedral coordination thus outweighs the mechanical stress of the associated lattice relaxation. Finally, we studied the electronic structure of V-substituted $\mathrm{\alpha}$-$\mathrm{In_2S_3}$ using hybrid density functional calculations and find that for a concentration of 1.9 at %, V on octahedrally coordinated In sites forms an empty IB isolated from valence band and conduction band (CB). By increasing the V content to 3.8 at %, however, the gap between IB and CB closes, which results in a reduction of the band gap. This differs from the electronic structure calculated for $\mathrm{\beta}$-$\mathrm{In_2S_3}$:V and clearly demonstrates that both crystal structure and V incorporation site affect the resulting electronic material properties.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Ghorbani, Elaheh ; Schiller, Martin ; Falk, Hans H. ; Wägele, Leonard A. ; Eckner, Stefanie ; d’Acapito, Francesco ; Scheer, Roland ; Albe, Karsten ; Schnohr, Claudia S.
Art des Eintrags: Bibliographie
Titel: Elucidating the local structure of V substitutes in In2S3 as potential intermediate band material by x-ray absorption spectroscopy and first principles calculations
Sprache: Englisch
Publikationsjahr: 6 Juni 2023
Verlag: IOP
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics: Energy
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 3
Kollation: 14 Seiten
DOI: 10.1088/2515-7655/acd95b
Kurzbeschreibung (Abstract):

Vanadium doped indium sulphide, In2S3:V, is studied as a potential absorber material for intermediate band (IB) solar cells. Based on electronic considerations, it is usually assumed that V occupies octahedrally coordinated In sites, although geometrical considerations would favour tetrahedral In sites. In this study, we therefore combined experimental x-ray diffraction and x-ray absorption spectroscopy with ab initio theoretical calculations of both $\mathrm{\alpha}$ and $\mathrm{\beta}$ phase to elucidate the incorporation of V in In2S3:V thin films grown with different V content and different growth temperatures. Comparing shape and position of the measured and calculated x-ray absorption edge of V, comparing experimentally determined and calculated V–S bond lengths, and evaluating the calculated heat of solution of V on different lattice sites all indicate that V is incorporated on octahedral rather than tetrahedral sites in the In2S3 matrix. For this material system, the electronic benefit of octahedral coordination thus outweighs the mechanical stress of the associated lattice relaxation. Finally, we studied the electronic structure of V-substituted $\mathrm{\alpha}$-$\mathrm{In_2S_3}$ using hybrid density functional calculations and find that for a concentration of 1.9 at %, V on octahedrally coordinated In sites forms an empty IB isolated from valence band and conduction band (CB). By increasing the V content to 3.8 at %, however, the gap between IB and CB closes, which results in a reduction of the band gap. This differs from the electronic structure calculated for $\mathrm{\beta}$-$\mathrm{In_2S_3}$:V and clearly demonstrates that both crystal structure and V incorporation site affect the resulting electronic material properties.

Freie Schlagworte: In2 S3, indium sulphide, vanadium, local structure, thin films, x-ray absorption spectroscopy, ab initio calculations
Zusätzliche Informationen:

Artikel-ID: 035003

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios
DFG-Sonderforschungsbereiche (inkl. Transregio) > Transregios > CRC/TRR 270 HoMMage
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
TU-Projekte: DFG|GH209/1-1|Intermediate-bands
Hinterlegungsdatum: 14 Jul 2023 06:44
Letzte Änderung: 17 Jul 2023 06:18
PPN: 509638791
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen