TU Darmstadt / ULB / TUbiblio

Piezotronic Bicrystals and Hexagonal Nano-Platelets: A TEM Study on Structure and Chemistry of Functionalized Zinc Oxide

Trapp, Maximilian (2023)
Piezotronic Bicrystals and Hexagonal Nano-Platelets: A TEM Study on Structure and Chemistry of Functionalized Zinc Oxide.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00024193
Dissertation, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

TEM and SEM investigations of piezotronic ZnO bicrystals were conducted with the aim to study the relationship between interface structure and electrical properties. In this context, the term “piezotronic” refers to the manipulation and tuning of electrostatic potential barriers at doped varistor-type grain boundaries via piezoelectric charges generated upon mechanical load. To this end, varistor-type inversion-boundary bicrystals were synthesized in tail-to-tail (000-1)|(000-1) or head to head (0001)|(0001) orientation with respect to the c axis, providing an optimized piezotronic response for load applied in <0001> directions. Different synthesis methods are compared and specific tilt configurations as well as undoped reference bicrystals were examined. Furthermore, ZnO nanocrystals, i.e., hexagonal platelets and rod shaped twins, were investigated, as both the bicrystals and the nanocrystals hold a large potential for functionalization and the development of novel devices. Finally, the dopant-related varistor-effect itself, which underlies the piezotronic applications, is – despite decades of research – still not completely elucidated and the examined bicrystals are well suited model systems for respective studies on specific dopant/grain-boundary situations. Since the varistor-effect is attributed to potential barriers at doped grain-boundaries, respective interfaces were investigated by atomic-resolution HAADF STEM; the main method in this thesis, capable of delivering structural as well as chemical information. These measurements were complemented with conventional TEM, ABF STEM, electron diffraction and EDS methods in order to fully characterize the bicrystals as well as control and verify their successful synthesis. The TEM results were interpreted with respect to the findings from corresponding electrical measurements. In doing so, the focus laid upon the successful doping with bismuth, which is essential to obtain varistor behavior and hence, for the subsequent piezotronic manipulation. As a main result, it was found that doping with Bi, being insoluble in ZnO, is by no means trivial and demands appropriate synthesis procedures and/or bicrystal configurations, which provide suitable segregation sites. Otherwise, Bi retracts from the interfaces and forms electrically inactive secondary phases. The presence of such segregation sites was found to be related to the respective structural coherence of the grain boundary. While highly coherent interfaces did not feature any significant Bi doping, semi- or incoherent interfaces exhibited a clear Bi decoration, which was also reflected by the electrical measurements revealing the absence or occurrence of varistor behavior, respectively. The required incoherency could be introduced either via a special synthesis procedure (epitaxial solid-state transformation) leading to a strongly curved defect-rich interface or by applying specific tilt configurations to diffusion-bonded bicrystals with a flat interface. The latter comprises two different cases: Semi-coherent configurations, where a coincidence-site lattice (CSL) is formed and CSL points act as semi-periodic segregation sites, and highly incoherent situations, where the interface structure is strongly and irregularly disordered. In addition to the structural characterization, thermodynamic aspects were considered, indicating that all three types of Bi-segregation (curved, flat semicoherent, flat incoherent) can be explained qualitatively by applying Gibbs adsorption isotherm, which describes the lowering of surface or interface energies depending on the decoration by impurity atoms. Due to the special case of an insoluble dopant, which is available in a quasi-infinite reservoir with respect to the limited amount of segregation sites, the segregation of Bi depends only on a) the energy difference between the undecorated and decorated interface, and b) the actual quantity of segregation sites. Both a) and b) are higher for incoherent interfaces and approach zero for the case of maximum coherency. The TEM results as well as the thermodynamic considerations were found to be not only in perfect agreement with previous ZnO bicrystal studies but also with comparable situations in other, completely different material systems. In consequence, they are considered to be applicable to all cases of interfacial segregation of insoluble dopants. The main goal behind the synthesis of the hexagonal ZnO platelets is their self-assembled tessellation upon Langmuir-Blodgett deposition. However, a synthesis route needed to be established first. TEM investigations were performed in order to characterize the obtained mineralization products and provide feedback for the optimization of the synthesis. In doing so, the same methods as for the bicrystals could be employed, in particular, ABF STEM and NBED for determining the absolute direction of the c-axis. This was an important issue for both the hexagonal platelets, where inversion twinning needed to be ruled out, as well as for the rod shaped twins, whose twinning character could be identified this way. In addition, the TEM investigations revealed a surface coverage of the hexagonal facets by residuals from the precipitation process. In consequence, an additional calcination step was added to the synthesis procedure, which was shown to successfully remove this coverage and simultaneously increase the quality of the surfaces from rough to almost atomically flat. Regarding the rod-shaped twins, actually a side-product of the synthesis experiments, the TEM findings revealed a situation similar to the piezotronic inversion-boundary bicrystals. In all cases, the crystallites were found to be accurate tail-to-tail inversion twins with anti-parallel c-axes and a disordered interface, probably capable of incorporating dopants such as Bi. In consequence, they are seen as holding potential for further development in their own right, especially against the background that the original “piezotronics” were established based on ZnO nanocrystals (nanowires).

Typ des Eintrags: Dissertation
Erschienen: 2023
Autor(en): Trapp, Maximilian
Art des Eintrags: Erstveröffentlichung
Titel: Piezotronic Bicrystals and Hexagonal Nano-Platelets: A TEM Study on Structure and Chemistry of Functionalized Zinc Oxide
Sprache: Englisch
Referenten: Kleebe, Prof. Dr. Hans-Joachim ; Rödel, Prof. Dr. Jürgen
Publikationsjahr: 2023
Ort: Darmstadt
Kollation: XVIII, 141 Seiten
Datum der mündlichen Prüfung: 19 Juni 2023
DOI: 10.26083/tuprints-00024193
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24193
Kurzbeschreibung (Abstract):

TEM and SEM investigations of piezotronic ZnO bicrystals were conducted with the aim to study the relationship between interface structure and electrical properties. In this context, the term “piezotronic” refers to the manipulation and tuning of electrostatic potential barriers at doped varistor-type grain boundaries via piezoelectric charges generated upon mechanical load. To this end, varistor-type inversion-boundary bicrystals were synthesized in tail-to-tail (000-1)|(000-1) or head to head (0001)|(0001) orientation with respect to the c axis, providing an optimized piezotronic response for load applied in <0001> directions. Different synthesis methods are compared and specific tilt configurations as well as undoped reference bicrystals were examined. Furthermore, ZnO nanocrystals, i.e., hexagonal platelets and rod shaped twins, were investigated, as both the bicrystals and the nanocrystals hold a large potential for functionalization and the development of novel devices. Finally, the dopant-related varistor-effect itself, which underlies the piezotronic applications, is – despite decades of research – still not completely elucidated and the examined bicrystals are well suited model systems for respective studies on specific dopant/grain-boundary situations. Since the varistor-effect is attributed to potential barriers at doped grain-boundaries, respective interfaces were investigated by atomic-resolution HAADF STEM; the main method in this thesis, capable of delivering structural as well as chemical information. These measurements were complemented with conventional TEM, ABF STEM, electron diffraction and EDS methods in order to fully characterize the bicrystals as well as control and verify their successful synthesis. The TEM results were interpreted with respect to the findings from corresponding electrical measurements. In doing so, the focus laid upon the successful doping with bismuth, which is essential to obtain varistor behavior and hence, for the subsequent piezotronic manipulation. As a main result, it was found that doping with Bi, being insoluble in ZnO, is by no means trivial and demands appropriate synthesis procedures and/or bicrystal configurations, which provide suitable segregation sites. Otherwise, Bi retracts from the interfaces and forms electrically inactive secondary phases. The presence of such segregation sites was found to be related to the respective structural coherence of the grain boundary. While highly coherent interfaces did not feature any significant Bi doping, semi- or incoherent interfaces exhibited a clear Bi decoration, which was also reflected by the electrical measurements revealing the absence or occurrence of varistor behavior, respectively. The required incoherency could be introduced either via a special synthesis procedure (epitaxial solid-state transformation) leading to a strongly curved defect-rich interface or by applying specific tilt configurations to diffusion-bonded bicrystals with a flat interface. The latter comprises two different cases: Semi-coherent configurations, where a coincidence-site lattice (CSL) is formed and CSL points act as semi-periodic segregation sites, and highly incoherent situations, where the interface structure is strongly and irregularly disordered. In addition to the structural characterization, thermodynamic aspects were considered, indicating that all three types of Bi-segregation (curved, flat semicoherent, flat incoherent) can be explained qualitatively by applying Gibbs adsorption isotherm, which describes the lowering of surface or interface energies depending on the decoration by impurity atoms. Due to the special case of an insoluble dopant, which is available in a quasi-infinite reservoir with respect to the limited amount of segregation sites, the segregation of Bi depends only on a) the energy difference between the undecorated and decorated interface, and b) the actual quantity of segregation sites. Both a) and b) are higher for incoherent interfaces and approach zero for the case of maximum coherency. The TEM results as well as the thermodynamic considerations were found to be not only in perfect agreement with previous ZnO bicrystal studies but also with comparable situations in other, completely different material systems. In consequence, they are considered to be applicable to all cases of interfacial segregation of insoluble dopants. The main goal behind the synthesis of the hexagonal ZnO platelets is their self-assembled tessellation upon Langmuir-Blodgett deposition. However, a synthesis route needed to be established first. TEM investigations were performed in order to characterize the obtained mineralization products and provide feedback for the optimization of the synthesis. In doing so, the same methods as for the bicrystals could be employed, in particular, ABF STEM and NBED for determining the absolute direction of the c-axis. This was an important issue for both the hexagonal platelets, where inversion twinning needed to be ruled out, as well as for the rod shaped twins, whose twinning character could be identified this way. In addition, the TEM investigations revealed a surface coverage of the hexagonal facets by residuals from the precipitation process. In consequence, an additional calcination step was added to the synthesis procedure, which was shown to successfully remove this coverage and simultaneously increase the quality of the surfaces from rough to almost atomically flat. Regarding the rod-shaped twins, actually a side-product of the synthesis experiments, the TEM findings revealed a situation similar to the piezotronic inversion-boundary bicrystals. In all cases, the crystallites were found to be accurate tail-to-tail inversion twins with anti-parallel c-axes and a disordered interface, probably capable of incorporating dopants such as Bi. In consequence, they are seen as holding potential for further development in their own right, especially against the background that the original “piezotronics” were established based on ZnO nanocrystals (nanowires).

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Um den Zusammenhang zwischen Grenzflächenstruktur und elektrischen Eigenschaften zu studieren, wurden an piezotronischen ZnO Bikristallen TEM und REM Untersuchungen durchgeführt. Der Begriff „piezotronisch“ bezieht sich hierbei auf die Manipulation und Anpassung elektrostatischer Potentialbarrieren an dotieren Varistorkorngrenzen mittels piezoelektrischer Ladungen, welche durch mechanische Belastung erzeugt werden. Zu diesem Zweck wurden Varistorbikristalle in „tail-to-tail“ (000-1)|(000-1) und „head to head“ (0001)|(0001) Orientierung, d.h. mit einer Invertierung der c-Achse orthogonal zur Korngrenze, hergestellt, was für Belastungen entlang <0001> eine optimale piezotronische Reaktion gewährleistet. Es wurden verschiedene Synthesemethoden verglichen und zusätzlich undotierte Referenzbikristalle und Bikristalle mit spezifischen Kipporientierungen begutachtet. Des Weiteren wurden Untersuchungen an ZnO Nanokristallen durchgeführt, welche die Form hexagonaler Plättchen und stäbchenförmiger Zwillinge haben und denen, ebenso wie den Bikristallen, ein großes Potenzial für Funktionalisierungen im Rahmen der Entwicklung neuartiger elektrischer Bauteile zugesprochen wird. Darüber hinaus ist der Varistoreffekt selbst, welcher den piezotronischen Anwendungen zu Grunde liegt, noch nicht final aufgeklärt – trotz jahrzehntelanger Forschung. Diesbezüglich stellen die untersuchten Bikristalle gut geeignete Modellsysteme dar, um spezifische Dotanden/Korngrenzsituationen zu studieren. Da der Varistoreffekt auf der Ausbildung von Potentialbarrieren an dotierten Korngrenzen basiert, wurden die entsprechenden Grenzflächen mittels atomar aufgelöster HAADF STEM untersucht; die Hauptmethode dieser Thesis, welche sowohl strukturelle als auch chemische Informationen liefert. Im Hinblick auf eine vollständige Charakterisierung und Kontrolle des Syntheseprozesses, wurden diese Messungen durch konventionelle TEM, ABF STEM, Elektronenbeugung und EDX-Methoden vervollständigt. Die TEM-Resultate wurden dann mit den Ergebnissen korrespondierender elektrischer Messungen verglichen und interpretiert. Dabei wurde der Fokus auf das erfolgreiche Dotieren mit Bismut gelegt, welches für das Auftreten von Varistoreigenschaften und damit auch für eine piezotronische Manipulation derselben eine notwendige Bedingung darstellt. Als Hauptergebnis wurde festgestellt, dass das Dotieren mit Bi, welches in ZnO unlöslich ist, keineswegs trivial ist und angepasste Synthesemethoden und/oder Bikristallkonfigurationen erforderlich sind, um für Bi geeignete Segregationsplätze zu erzeugen, da es ansonsten von der Grenzfläche abgezogen wird und elektrisch inaktive Sekundärphasen bildet. Es wurde beobachtet, dass entsprechende Segregationsplätze in Abhängigkeit von der strukturellen Kohärenz der jeweiligen Korngrenze auftreten. Während hochkohärente Grenzflächen undotiert blieben, wurde ein deutlicher Einbau von Bi an semi- oder inkohärenten Grenzflächen vorgefunden, was sich auch in den elektrischen Messungen widerspiegelte, die dementsprechend ein Ausbleiben bzw. ein Auftreten des Varistoreffekts nachwiesen. Die notwendige Inkohärenz konnte entweder durch eine besondere Synthesemethode (epitaktische Festkörpertransformation) erzeugt werden, welche zu einer stark gekrümmten, defektreichen Korngrenze führte, oder durch eine gezielte Kipporientierung für Bikristalle mit flacher Korngrenze herbeigeführt werden. Für Letzteres konnten zwei Fälle unterschieden werden: Semikohärente Konfigurationen, bei denen sich ein Koinzidenzgitter (CSL) ausbildet und dessen Punkte als semiperiodische Segregationsplätze fungieren, sowie hochinkohärente Grenzflächen, deren Struktur eine deutliche Unordnung beinhaltet. Zusätzlich zur strukturellen Charakterisierung wurden thermodynamische Aspekte betrachtet, welche darauf hinweisen, dass alle drei Arten von Bi-Segregation (gekrümmt, flach-semikohärent, flach-hochkohärent) durch die Gibbssche Adsorptionsisotherme qualitativ erklärt werden können. Diese Gleichung beschreibt die Verringerung von Ober- oder Grenzflächenenergien durch die Anlagerung von Fremdatomen. Für den besonderen Fall eines unlöslichen Dotanden, welcher aber quasi-unendlich zur Verfügung steht gegenüber einer limitierten Anzahl von Segregationsplätzen, hängt die Segregation ausschließlich von a) der Energiedifferenz zwischen unbesetzter und besetzter Korngrenze, sowie von b) der Menge an verfügbaren Segregationsplätzen ab. Dabei sind a) und b) jeweils höher für inkohärente Grenzflächen und gehen gegen null für den Fall maximaler Kohärenz. Ein Vergleich mit einschlägiger Literatur zeigt, dass sowohl die TEM Ergebnisse, als auch die thermodynamischen Betrachtungen nicht nur mit den Resultaten früherer Bikristallstudien, sondern auch mit denen völlig verschiedener Materialsysteme übereinstimmen, weswegen sie als generalisierbar angesehen werden. Mit dem Ziel einer Langmuir-Blodgett Abscheidung einer sich selbstassemblierenden Monolage von Kristalliten, wurden eine Syntheseroute für hexagonalen ZnO Plättchen bestimmt. Im Zuge dessen wurden TEM Untersuchungen durchgeführt, um die entstandenen Mineralisations-produkte zu charakterisieren und die Synthese entsprechend zu optimieren. Dafür wurden dieselben Methoden wie bei den Bikristallen angewandt, insbesondere ABF STEM und NBED zur Bestimmung der absoluten Ausrichtung der c-Achse. Dies war sowohl für die Hexagone, wo Inversionszwillinge ausgeschlossen werden mussten, als auch für die stäbchenförmigen Zwillinge, deren Zwillingscharakter so bestimmt werden konnte, von besonderer Bedeutung. Des Weiteren wurde bei den TEM Untersuchungen festgestellt, dass die ZnO Hexagone eine Oberflächenbelegung mit residualem Material der Fällungssynthese aufwiesen, welche durch eine entsprechend konzipierte, zusätzliche Calcinierung entfernt werden konnte, die zeitgleich für eine Verbesserung der Oberflächenqualität der Facetten von rau zu quasi atomar eben sorgte. Im Hinblick auf die stäbchenförmigen Zwillinge, bei denen es sich eigentlich um ein Nebenprodukt der Syntheseexperimente für die Hexagone handelt, konnte gezeigt werden, dass es sich ausschließlich um präzis ausgerichtete „tail-to-tail“ Inversionszwillinge mit anti-parallelen c-Achsen handelt, deren Grenzfläche eine gewisse Unordnung aufweist. Damit könnten diese in der Lage sein Dotanden, wie Bi einzubauen und somit für ähnliche Anwendungsszenarien wie die der piezotronischen Bikristalle interessant sein, vor allem im Hinblick auf die Tatsache, dass es sich bei den ursprünglichen piezotronischen Elementen bereits um ZnO Nanokristalle (Nanodrähte) handelte.

Deutsch
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-241930
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
TU-Projekte: DFG|KL615/27-1|Mechanisch einstellb
Hinterlegungsdatum: 04 Jul 2023 12:54
Letzte Änderung: 05 Jul 2023 04:58
PPN:
Referenten: Kleebe, Prof. Dr. Hans-Joachim ; Rödel, Prof. Dr. Jürgen
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 19 Juni 2023
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen