TU Darmstadt / ULB / TUbiblio

An hp-adaptive multi-element stochastic collocation method for surrogate modeling with information re-use

Galetzka, Armin ; Loukrezis, Dimitrios ; Georg, Niklas ; De Gersem, Herbert ; Römer, Ulrich (2023)
An hp-adaptive multi-element stochastic collocation method for surrogate modeling with information re-use.
In: International Journal for Numerical Methods in Engineering, 124 (12)
doi: 10.1002/nme.7234
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Abstract This article introduces an hp-adaptive multi-element stochastic collocation method, which additionally allows to re-use existing model evaluations during either h- or p-refinement. The collocation method is based on weighted Leja nodes. After h-refinement, local interpolations are stabilized by adding and sorting Leja nodes on each newly created sub-element in a hierarchical manner. For p-refinement, the local polynomial approximations are based on total-degree or dimension-adaptive bases. The method is applied in the context of forward and inverse uncertainty quantification to handle non-smooth or strongly localized response surfaces. The performance of the proposed method is assessed in several test cases, also in comparison to competing methods.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Galetzka, Armin ; Loukrezis, Dimitrios ; Georg, Niklas ; De Gersem, Herbert ; Römer, Ulrich
Art des Eintrags: Bibliographie
Titel: An hp-adaptive multi-element stochastic collocation method for surrogate modeling with information re-use
Sprache: Englisch
Publikationsjahr: 2023
Verlag: Wiley & Sons
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal for Numerical Methods in Engineering
Jahrgang/Volume einer Zeitschrift: 124
(Heft-)Nummer: 12
DOI: 10.1002/nme.7234
URL / URN: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.7234
Kurzbeschreibung (Abstract):

Abstract This article introduces an hp-adaptive multi-element stochastic collocation method, which additionally allows to re-use existing model evaluations during either h- or p-refinement. The collocation method is based on weighted Leja nodes. After h-refinement, local interpolations are stabilized by adding and sorting Leja nodes on each newly created sub-element in a hierarchical manner. For p-refinement, the local polynomial approximations are based on total-degree or dimension-adaptive bases. The method is applied in the context of forward and inverse uncertainty quantification to handle non-smooth or strongly localized response surfaces. The performance of the proposed method is assessed in several test cases, also in comparison to competing methods.

Freie Schlagworte: hp-adaptivity, multi-element approximation, stochastic collocation, surrogate modeling, uncertainty quantification
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Theorie Elektromagnetischer Felder
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Hinterlegungsdatum: 20 Jun 2023 11:47
Letzte Änderung: 06 Feb 2024 07:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen