Galetzka, Armin ; Loukrezis, Dimitrios ; Georg, Niklas ; De Gersem, Herbert ; Römer, Ulrich (2023)
An hp-adaptive multi-element stochastic collocation method for surrogate modeling with information re-use.
In: International Journal for Numerical Methods in Engineering, 124 (12)
doi: 10.1002/nme.7234
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Abstract This article introduces an hp-adaptive multi-element stochastic collocation method, which additionally allows to re-use existing model evaluations during either h- or p-refinement. The collocation method is based on weighted Leja nodes. After h-refinement, local interpolations are stabilized by adding and sorting Leja nodes on each newly created sub-element in a hierarchical manner. For p-refinement, the local polynomial approximations are based on total-degree or dimension-adaptive bases. The method is applied in the context of forward and inverse uncertainty quantification to handle non-smooth or strongly localized response surfaces. The performance of the proposed method is assessed in several test cases, also in comparison to competing methods.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Galetzka, Armin ; Loukrezis, Dimitrios ; Georg, Niklas ; De Gersem, Herbert ; Römer, Ulrich |
Art des Eintrags: | Bibliographie |
Titel: | An hp-adaptive multi-element stochastic collocation method for surrogate modeling with information re-use |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Verlag: | Wiley & Sons |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | International Journal for Numerical Methods in Engineering |
Jahrgang/Volume einer Zeitschrift: | 124 |
(Heft-)Nummer: | 12 |
DOI: | 10.1002/nme.7234 |
URL / URN: | https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.7234 |
Kurzbeschreibung (Abstract): | Abstract This article introduces an hp-adaptive multi-element stochastic collocation method, which additionally allows to re-use existing model evaluations during either h- or p-refinement. The collocation method is based on weighted Leja nodes. After h-refinement, local interpolations are stabilized by adding and sorting Leja nodes on each newly created sub-element in a hierarchical manner. For p-refinement, the local polynomial approximations are based on total-degree or dimension-adaptive bases. The method is applied in the context of forward and inverse uncertainty quantification to handle non-smooth or strongly localized response surfaces. The performance of the proposed method is assessed in several test cases, also in comparison to competing methods. |
Freie Schlagworte: | hp-adaptivity, multi-element approximation, stochastic collocation, surrogate modeling, uncertainty quantification |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Theorie Elektromagnetischer Felder 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder |
Hinterlegungsdatum: | 20 Jun 2023 11:47 |
Letzte Änderung: | 06 Feb 2024 07:53 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
An hp‐adaptive multi‐element stochastic collocation method for surrogate modeling with information re‐use. (deposited 10 Nov 2023 15:25)
- An hp-adaptive multi-element stochastic collocation method for surrogate modeling with information re-use. (deposited 20 Jun 2023 11:47) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |