TU Darmstadt / ULB / TUbiblio

Data-driven solvers for strongly nonlinear material response

Galetzka, Armin ; Loukrezis, Dimitrios ; De Gersem, Herbert (2021)
Data-driven solvers for strongly nonlinear material response.
In: International Journal for Numerical Methods in Engineering, 122 (6)
doi: 10.1002/nme.6589
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Abstract This work presents a data-driven magnetostatic finite-element solver that is specifically well suited to cope with strongly nonlinear material responses. The data-driven computing framework is essentially a multiobjective optimization procedure matching the material operation points as closely as possible to given material data while obeying Maxwell's equations. Here, the framework is extended with heterogeneous (local) weighting factors—one per finite element—equilibrating the goal function locally according to the material behavior. This modification allows the data-driven solver to cope with unbalanced measurement data sets, that is, data sets suffering from unbalanced space filling. This occurs particularly in the case of strongly nonlinear materials, which constitute problematic cases that hinder the efficiency and accuracy of standard data-driven solvers with a homogeneous (global) weighting factor. The local weighting factors are embedded in the distance-minimizing data-driven algorithm used for noiseless data, likewise for the maximum entropy data-driven algorithm used for noisy data. Numerical experiments based on a quadrupole magnet model with a soft magnetic material show that the proposed modification results in major improvements in terms of solution accuracy and solver efficiency. For the case of noiseless data, local weighting factors improve the convergence of the data-driven solver by orders of magnitude. When noisy data are considered, the convergence rate of the data-driven solver is doubled.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Galetzka, Armin ; Loukrezis, Dimitrios ; De Gersem, Herbert
Art des Eintrags: Bibliographie
Titel: Data-driven solvers for strongly nonlinear material response
Sprache: Englisch
Publikationsjahr: 30 März 2021
Verlag: Wiley & Sons
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal for Numerical Methods in Engineering
Jahrgang/Volume einer Zeitschrift: 122
(Heft-)Nummer: 6
DOI: 10.1002/nme.6589
URL / URN: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6589
Kurzbeschreibung (Abstract):

Abstract This work presents a data-driven magnetostatic finite-element solver that is specifically well suited to cope with strongly nonlinear material responses. The data-driven computing framework is essentially a multiobjective optimization procedure matching the material operation points as closely as possible to given material data while obeying Maxwell's equations. Here, the framework is extended with heterogeneous (local) weighting factors—one per finite element—equilibrating the goal function locally according to the material behavior. This modification allows the data-driven solver to cope with unbalanced measurement data sets, that is, data sets suffering from unbalanced space filling. This occurs particularly in the case of strongly nonlinear materials, which constitute problematic cases that hinder the efficiency and accuracy of standard data-driven solvers with a homogeneous (global) weighting factor. The local weighting factors are embedded in the distance-minimizing data-driven algorithm used for noiseless data, likewise for the maximum entropy data-driven algorithm used for noisy data. Numerical experiments based on a quadrupole magnet model with a soft magnetic material show that the proposed modification results in major improvements in terms of solution accuracy and solver efficiency. For the case of noiseless data, local weighting factors improve the convergence of the data-driven solver by orders of magnitude. When noisy data are considered, the convergence rate of the data-driven solver is doubled.

Freie Schlagworte: data-driven computing, data science, electromagnetic field simulation, noisy measurements, nonlinear material response, soft magnetic materials
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Theorie Elektromagnetischer Felder
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Hinterlegungsdatum: 20 Jun 2023 11:45
Letzte Änderung: 20 Jun 2023 11:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen