TU Darmstadt / ULB / TUbiblio

Combining Data-Intense and Compute-Intense Methods for Fine-Grained Morphological Analyses

Steiner, Petra (2019)
Combining Data-Intense and Compute-Intense Methods for Fine-Grained Morphological Analyses.
2nd International Workshop on Resources and Tools for Derivational Morphology. Prague, Czech Republic (19.09.2019-20.09.2019)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This article describes a hybrid approach for German derivational and compositional morphology. Its first module is based on retrieval from morphological databases. The second module builds on the results of a word segmenter and uses a context-based approach by exploiting 1.8 million texts from Wikipedia for the disambiguation of multiple morphological splits. Insights from Quantitative Linguistics help countering two sparse-data problems. The results can become more fine-grained during each cycle of computation and be added to the lexical input data with or without supervision. The evaluation on an inflight magazine shows a good coverage and an accuracy of 93% for the deep-level analyses

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Steiner, Petra
Art des Eintrags: Bibliographie
Titel: Combining Data-Intense and Compute-Intense Methods for Fine-Grained Morphological Analyses
Sprache: Deutsch
Publikationsjahr: 21 September 2019
Verlag: ACL
Buchtitel: DeriMO 2019: Proceedings of the Second International Workshop on Resources and Tools for Derivational Morphology
Veranstaltungstitel: 2nd International Workshop on Resources and Tools for Derivational Morphology
Veranstaltungsort: Prague, Czech Republic
Veranstaltungsdatum: 19.09.2019-20.09.2019
URL / URN: https://aclanthology.org/W19-8506
Kurzbeschreibung (Abstract):

This article describes a hybrid approach for German derivational and compositional morphology. Its first module is based on retrieval from morphological databases. The second module builds on the results of a word segmenter and uses a context-based approach by exploiting 1.8 million texts from Wikipedia for the disambiguation of multiple morphological splits. Insights from Quantitative Linguistics help countering two sparse-data problems. The results can become more fine-grained during each cycle of computation and be added to the lexical input data with or without supervision. The evaluation on an inflight magazine shows a good coverage and an accuracy of 93% for the deep-level analyses

Fachbereich(e)/-gebiet(e): Zentrale Einrichtungen
Zentrale Einrichtungen > Universitäts- und Landesbibliothek (ULB)
Hinterlegungsdatum: 19 Jun 2023 13:33
Letzte Änderung: 19 Jun 2023 13:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen