Urban, Matthias ; Binnig, Carsten
Hybrid Database Operations: Learned Operations for Seamless Querying of Textual and Tabular Data.
In: CEUR workshop proceedings, 3341
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Many real-world applications in medicine, finance or other domains need to combine tabular and textual data. In this paper, we present a new approach called hybrid database operations which is a new class of learned database operations that allows users to seamlessly execute SQL queries over text and tabular data. As a main contribution to enable hybrid database operations, we show how state-of-the-art pre-trained language models such as BERT can be used to implement hybrid database operations such as joins or unions. In our initial evaluation, we report first promising results on real-world data sets which indicate that highly accurate hybrid operations can be realized with minimal training overhead.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Herausgeber: | Reuss, Pascal ; Eisenstadt, Viktor ; Sch\"nborn, Jakob Michael ; Sch\"fer, Jero |
Autor(en): | Urban, Matthias ; Binnig, Carsten |
Art des Eintrags: | Bibliographie |
Titel: | Hybrid Database Operations: Learned Operations for Seamless Querying of Textual and Tabular Data |
Sprache: | Englisch |
Publikationsjahr: | Oktober 2022 |
Verlag: | CEUR-WS |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | CEUR workshop proceedings |
Jahrgang/Volume einer Zeitschrift: | 3341 |
URL / URN: | https://ceur-ws.org/Vol-3341/ |
Kurzbeschreibung (Abstract): | Many real-world applications in medicine, finance or other domains need to combine tabular and textual data. In this paper, we present a new approach called hybrid database operations which is a new class of learned database operations that allows users to seamlessly execute SQL queries over text and tabular data. As a main contribution to enable hybrid database operations, we show how state-of-the-art pre-trained language models such as BERT can be used to implement hybrid database operations such as joins or unions. In our initial evaluation, we report first promising results on real-world data sets which indicate that highly accurate hybrid operations can be realized with minimal training overhead. |
Freie Schlagworte: | systems_aico |
Zusätzliche Informationen: | LWDA 2022: Lernen, Wissen, Daten, Analysen 2022: Proceedings of the LWDA 2022 Workshops: FGWM, FGKD, and FGDB, Hildesheim (Germany), 05.-07.10.2022 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Data and AI Systems |
Hinterlegungsdatum: | 12 Jun 2023 12:50 |
Letzte Änderung: | 09 Aug 2023 14:48 |
PPN: | 510473210 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |