TU Darmstadt / ULB / TUbiblio

Hybrid Database Operations: Learned Operations for Seamless Querying of Textual and Tabular Data

Urban, Matthias ; Binnig, Carsten
Hybrid Database Operations: Learned Operations for Seamless Querying of Textual and Tabular Data.
In: CEUR workshop proceedings, 3341
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Many real-world applications in medicine, finance or other domains need to combine tabular and textual data. In this paper, we present a new approach called hybrid database operations which is a new class of learned database operations that allows users to seamlessly execute SQL queries over text and tabular data. As a main contribution to enable hybrid database operations, we show how state-of-the-art pre-trained language models such as BERT can be used to implement hybrid database operations such as joins or unions. In our initial evaluation, we report first promising results on real-world data sets which indicate that highly accurate hybrid operations can be realized with minimal training overhead.

Typ des Eintrags: Artikel
Erschienen: 2022
Herausgeber: Reuss, Pascal ; Eisenstadt, Viktor ; Sch\"nborn, Jakob Michael ; Sch\"fer, Jero
Autor(en): Urban, Matthias ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: Hybrid Database Operations: Learned Operations for Seamless Querying of Textual and Tabular Data
Sprache: Englisch
Publikationsjahr: Oktober 2022
Verlag: CEUR-WS
Titel der Zeitschrift, Zeitung oder Schriftenreihe: CEUR workshop proceedings
Jahrgang/Volume einer Zeitschrift: 3341
URL / URN: https://ceur-ws.org/Vol-3341/
Kurzbeschreibung (Abstract):

Many real-world applications in medicine, finance or other domains need to combine tabular and textual data. In this paper, we present a new approach called hybrid database operations which is a new class of learned database operations that allows users to seamlessly execute SQL queries over text and tabular data. As a main contribution to enable hybrid database operations, we show how state-of-the-art pre-trained language models such as BERT can be used to implement hybrid database operations such as joins or unions. In our initial evaluation, we report first promising results on real-world data sets which indicate that highly accurate hybrid operations can be realized with minimal training overhead.

Freie Schlagworte: systems_aico
Zusätzliche Informationen:

LWDA 2022: Lernen, Wissen, Daten, Analysen 2022: Proceedings of the LWDA 2022 Workshops: FGWM, FGKD, and FGDB, Hildesheim (Germany), 05.-07.10.2022

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
Hinterlegungsdatum: 12 Jun 2023 12:50
Letzte Änderung: 09 Aug 2023 14:48
PPN: 510473210
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen