TU Darmstadt / ULB / TUbiblio

Demonstrating Quest: A Query-Driven Framework to Explain Classification Models on Tabular Data

Geisler, Nadja ; Hättasch, Benjamin ; Binnig, Carsten (2022)
Demonstrating Quest: A Query-Driven Framework to Explain Classification Models on Tabular Data.
In: Proceedings of the VLDB Endowment, 15 (12)
doi: 10.14778/3554821.3554884
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Machine learning models are everywhere now; but only few of them are transparent in how they work. To remedy this, local explanations aim to show users how and why learned models produce a certain output for a given input (data sample). However, most existing approaches are oriented around images or text data and, thus, cannot leverage the structure and properties of tabular data. Therefore, we demonstrate Quest, a new framework for generating explanations that are a better fit for tabular data. The main idea is to create explanations in the form of relational predicates (called queries hereafter) that approximate the behavior of a classifier around the given sample. For this demo, we use Quest on different synthetic and real-world tabular data sets and pair it with a user interface intended to be used during model development by a data scientist working on classification models.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Geisler, Nadja ; Hättasch, Benjamin ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: Demonstrating Quest: A Query-Driven Framework to Explain Classification Models on Tabular Data
Sprache: Englisch
Publikationsjahr: 1 August 2022
Verlag: ACM
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the VLDB Endowment
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 12
DOI: 10.14778/3554821.3554884
Kurzbeschreibung (Abstract):

Machine learning models are everywhere now; but only few of them are transparent in how they work. To remedy this, local explanations aim to show users how and why learned models produce a certain output for a given input (data sample). However, most existing approaches are oriented around images or text data and, thus, cannot leverage the structure and properties of tabular data. Therefore, we demonstrate Quest, a new framework for generating explanations that are a better fit for tabular data. The main idea is to create explanations in the form of relational predicates (called queries hereafter) that approximate the behavior of a classifier around the given sample. For this demo, we use Quest on different synthetic and real-world tabular data sets and pair it with a user interface intended to be used during model development by a data scientist working on classification models.

Freie Schlagworte: systems_quest, systems_funding_50001242, systems_kompaki
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
Hinterlegungsdatum: 06 Jun 2023 12:26
Letzte Änderung: 02 Aug 2023 12:38
PPN: 510086489
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen