TU Darmstadt / ULB / TUbiblio

Know Better - A Clickbait Resolving Challenge

Hättasch, Benjamin ; Binnig, Carsten (2022)
Know Better - A Clickbait Resolving Challenge.
13th International Conference on Language Resources and Evaluation. Marseille, France (20.06.2022-25.06.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we present a new corpus of clickbait articles annotated by university students along with a corresponding shared task: clickbait articles use a headline or teaser that hides information from the reader to make them curious to open the article. We therefore propose to construct approaches that can automatically extract the relevant information from such an article, which we call clickbait resolving. We show why solving this task might be relevant for end users, and why clickbait can probably not be defeated with clickbait detection alone. Additionally, we argue that this task, although similar to question answering and some automatic summarization approaches, needs to be tackled with specialized models. We analyze the performance of some basic approaches on this task and show that models fine-tuned on our data can outperform general question answering models, while providing a systematic approach to evaluate the results. We hope that the data set and the task will help in giving users tools to counter clickbait in the future.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Hättasch, Benjamin ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: Know Better - A Clickbait Resolving Challenge
Sprache: Englisch
Publikationsjahr: Juni 2022
Verlag: European Language Resources Association
Buchtitel: Proceedings of the Thirteenth Language Resources and Evaluation Conference
Veranstaltungstitel: 13th International Conference on Language Resources and Evaluation
Veranstaltungsort: Marseille, France
Veranstaltungsdatum: 20.06.2022-25.06.2022
URL / URN: https://aclanthology.org/2022.lrec-1.54
Kurzbeschreibung (Abstract):

In this paper, we present a new corpus of clickbait articles annotated by university students along with a corresponding shared task: clickbait articles use a headline or teaser that hides information from the reader to make them curious to open the article. We therefore propose to construct approaches that can automatically extract the relevant information from such an article, which we call clickbait resolving. We show why solving this task might be relevant for end users, and why clickbait can probably not be defeated with clickbait detection alone. Additionally, we argue that this task, although similar to question answering and some automatic summarization approaches, needs to be tackled with specialized models. We analyze the performance of some basic approaches on this task and show that models fine-tuned on our data can outperform general question answering models, while providing a systematic approach to evaluate the results. We hope that the data set and the task will help in giving users tools to counter clickbait in the future.

Freie Schlagworte: systems_clickbait_challenge
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
Hinterlegungsdatum: 06 Jun 2023 12:32
Letzte Änderung: 02 Aug 2023 12:58
PPN: 510087329
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen