TU Darmstadt / ULB / TUbiblio

Demonstrating CAT: Synthesizing Data-Aware Conversational Agents for Transactional Databases

Gassen, Marius ; Hättasch, Benjamin ; Hilprecht, Benjamin ; Geisler, Nadja ; Fraser, Alexander ; Binnig, Carsten (2022)
Demonstrating CAT: Synthesizing Data-Aware Conversational Agents for Transactional Databases.
In: Proceedings of the VLDB Endowment, 15 (12)
doi: 10.14778/3554821.3554850
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Databases for OLTP are often the backbone for applications such as hotel room or cinema ticket booking applications. However, developing a conversational agent (i.e., a chatbot-like interface) to allow end-users to interact with an application using natural language requires both immense amounts of training data and NLP expertise. This motivates CAT, which can be used to easily create conversational agents for transactional databases. The main idea is that, for a given OLTP database, CAT uses weak supervision to synthesize the required training data to train a state-of-the-art conversational agent, allowing users to interact with the OLTP database. Furthermore, CAT provides an out-of-the-box integration of the resulting agent with the database. As a major difference to existing conversational agents, agents synthesized by CAT are data-aware. This means that the agent decides which information should be requested from the user based on the current data distributions in the database, which typically results in markedly more efficient dialogues compared with non-data-aware agents. We publish the code for CAT as open source.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Gassen, Marius ; Hättasch, Benjamin ; Hilprecht, Benjamin ; Geisler, Nadja ; Fraser, Alexander ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: Demonstrating CAT: Synthesizing Data-Aware Conversational Agents for Transactional Databases
Sprache: Englisch
Publikationsjahr: 5 September 2022
Verlag: ACM
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the VLDB Endowment
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 12
DOI: 10.14778/3554821.3554850
URL / URN: https://dl.acm.org/doi/10.14778/3554821.3554850
Kurzbeschreibung (Abstract):

Databases for OLTP are often the backbone for applications such as hotel room or cinema ticket booking applications. However, developing a conversational agent (i.e., a chatbot-like interface) to allow end-users to interact with an application using natural language requires both immense amounts of training data and NLP expertise. This motivates CAT, which can be used to easily create conversational agents for transactional databases. The main idea is that, for a given OLTP database, CAT uses weak supervision to synthesize the required training data to train a state-of-the-art conversational agent, allowing users to interact with the OLTP database. Furthermore, CAT provides an out-of-the-box integration of the resulting agent with the database. As a major difference to existing conversational agents, agents synthesized by CAT are data-aware. This means that the agent decides which information should be requested from the user based on the current data distributions in the database, which typically results in markedly more efficient dialogues compared with non-data-aware agents. We publish the code for CAT as open source.

Freie Schlagworte: systems_cat
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
Hinterlegungsdatum: 06 Jun 2023 12:42
Letzte Änderung: 02 Aug 2023 13:47
PPN: 510089097
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen