Modi, Parth Daxesh ; Arshi, Kamyar ; Kunz, Pertami J. ; Zoubir, Abdelhak M. (2023)
A Data-driven Deep Learning Approach for Bitcoin Price Forecasting.
24th International Conference on Digital Signal Processing. Rhodes, Greece (11.06.2023-13.06.2023)
doi: 10.1109/DSP58604.2023.10167930
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Bitcoin as a cryptocurrency has been one of the most important digital coins and the first decentralized digital currency. We propose a shallow Bidirectional-LSTM (Bi-LSTM) model, fed with feature engineered data using our proposed method to forecast bitcoin closing prices in a daily time frame. We compare the performance with that of other forecasting methods, and show that with the help of the proposed feature engineering method, a shallow deep neural network out-performs other popular price forecasting models.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Modi, Parth Daxesh ; Arshi, Kamyar ; Kunz, Pertami J. ; Zoubir, Abdelhak M. |
Art des Eintrags: | Bibliographie |
Titel: | A Data-driven Deep Learning Approach for Bitcoin Price Forecasting |
Sprache: | Englisch |
Publikationsjahr: | 5 Juli 2023 |
Verlag: | IEEE |
Buchtitel: | 24th DSP 2023: 2023 24th International Conference on Digital Signal Processing |
Veranstaltungstitel: | 24th International Conference on Digital Signal Processing |
Veranstaltungsort: | Rhodes, Greece |
Veranstaltungsdatum: | 11.06.2023-13.06.2023 |
DOI: | 10.1109/DSP58604.2023.10167930 |
Kurzbeschreibung (Abstract): | Bitcoin as a cryptocurrency has been one of the most important digital coins and the first decentralized digital currency. We propose a shallow Bidirectional-LSTM (Bi-LSTM) model, fed with feature engineered data using our proposed method to forecast bitcoin closing prices in a daily time frame. We compare the performance with that of other forecasting methods, and show that with the help of the proposed feature engineering method, a shallow deep neural network out-performs other popular price forecasting models. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) |
Hinterlegungsdatum: | 10 Jul 2023 10:22 |
Letzte Änderung: | 10 Jul 2023 10:22 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |