TU Darmstadt / ULB / TUbiblio

A Data-driven Deep Learning Approach for Bitcoin Price Forecasting

Modi, Parth Daxesh ; Arshi, Kamyar ; Kunz, Pertami J. ; Zoubir, Abdelhak M. (2023)
A Data-driven Deep Learning Approach for Bitcoin Price Forecasting.
24th International Conference on Digital Signal Processing. Rhodes, Greece (11.06.2023-13.06.2023)
doi: 10.1109/DSP58604.2023.10167930
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Bitcoin as a cryptocurrency has been one of the most important digital coins and the first decentralized digital currency. We propose a shallow Bidirectional-LSTM (Bi-LSTM) model, fed with feature engineered data using our proposed method to forecast bitcoin closing prices in a daily time frame. We compare the performance with that of other forecasting methods, and show that with the help of the proposed feature engineering method, a shallow deep neural network out-performs other popular price forecasting models.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Modi, Parth Daxesh ; Arshi, Kamyar ; Kunz, Pertami J. ; Zoubir, Abdelhak M.
Art des Eintrags: Bibliographie
Titel: A Data-driven Deep Learning Approach for Bitcoin Price Forecasting
Sprache: Englisch
Publikationsjahr: 5 Juli 2023
Verlag: IEEE
Buchtitel: 24th DSP 2023: 2023 24th International Conference on Digital Signal Processing
Veranstaltungstitel: 24th International Conference on Digital Signal Processing
Veranstaltungsort: Rhodes, Greece
Veranstaltungsdatum: 11.06.2023-13.06.2023
DOI: 10.1109/DSP58604.2023.10167930
Kurzbeschreibung (Abstract):

Bitcoin as a cryptocurrency has been one of the most important digital coins and the first decentralized digital currency. We propose a shallow Bidirectional-LSTM (Bi-LSTM) model, fed with feature engineered data using our proposed method to forecast bitcoin closing prices in a daily time frame. We compare the performance with that of other forecasting methods, and show that with the help of the proposed feature engineering method, a shallow deep neural network out-performs other popular price forecasting models.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 10 Jul 2023 10:22
Letzte Änderung: 10 Jul 2023 10:22
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen