TU Darmstadt / ULB / TUbiblio

Decentralized Coordination in Partially Observable Queueing Networks

Jia, Jiekai ; Tahir, Anam ; Koeppl, Heinz (2022)
Decentralized Coordination in Partially Observable Queueing Networks.
GLOBECOM 2022 - 2022 IEEE Global Communications Conference. Rio de Janeiro (04.12.2022-08.12.2022)
doi: 10.1109/GLOBECOM48099.2022.10001584
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We consider communication in a fully cooperative multi-agent system, where the agents have partial observation of the environment and must act jointly to maximize the overall reward. We have a discrete-time queueing network where agents route packets to queues based only on the partial information of the current queue lengths. The queues have limited buffer capacity, so packet drops happen when they are sent to a full queue. In this work, we implemented a communication channel for the agents to share their information in order to reduce the packet drop rate. For efficient information sharing we use an attention-based communication model, called ATVC, to select informative messages from other agents. The agents then infer the state of queues using a combination of the variational autoencoder, VAE, and product-of-experts, PoE, model. Ultimately, the agents learn what they need to communicate and with whom, instead of communicating all the time with everyone. We also show empirically that ATVC is able to infer the true state of the queues and leads to a policy which outperforms existing baselines.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Jia, Jiekai ; Tahir, Anam ; Koeppl, Heinz
Art des Eintrags: Bibliographie
Titel: Decentralized Coordination in Partially Observable Queueing Networks
Sprache: Englisch
Publikationsjahr: 2022
Verlag: IEEE
Buchtitel: 2022 IEEE Global Communications Conference (GLOBECOM): Proceedings
Veranstaltungstitel: GLOBECOM 2022 - 2022 IEEE Global Communications Conference
Veranstaltungsort: Rio de Janeiro
Veranstaltungsdatum: 04.12.2022-08.12.2022
DOI: 10.1109/GLOBECOM48099.2022.10001584
Kurzbeschreibung (Abstract):

We consider communication in a fully cooperative multi-agent system, where the agents have partial observation of the environment and must act jointly to maximize the overall reward. We have a discrete-time queueing network where agents route packets to queues based only on the partial information of the current queue lengths. The queues have limited buffer capacity, so packet drops happen when they are sent to a full queue. In this work, we implemented a communication channel for the agents to share their information in order to reduce the packet drop rate. For efficient information sharing we use an attention-based communication model, called ATVC, to select informative messages from other agents. The agents then infer the state of queues using a combination of the variational autoencoder, VAE, and product-of-experts, PoE, model. Ultimately, the agents learn what they need to communicate and with whom, instead of communicating all the time with everyone. We also show empirically that ATVC is able to infer the true state of the queues and leads to a policy which outperforms existing baselines.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 06 Jun 2023 13:44
Letzte Änderung: 02 Aug 2023 14:28
PPN: 510090176
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen