TU Darmstadt / ULB / TUbiblio

Load Balancing in Compute Clusters with Delayed Feedback

Tahir, Anam ; Alt, Bastian ; Rizk, Amr ; Koeppl, Heinz (2023)
Load Balancing in Compute Clusters with Delayed Feedback.
In: IEEE Transactions on Computers, 72 (6)
doi: 10.1109/TC.2022.3215907
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Load balancing arises as a fundamental problem, underlying the dimensioning and operation of many computing andcommunication systems, such as job routing in data center clusters, multipath communication, Big Data and queueing systems. Inessence, the decision-making agent maps each arriving job to one of the possibly heterogeneous servers while aiming at anoptimization goal such as load balancing, low average delay or low loss rate. One main difficulty in finding optimal load balancingpolicies here is that the agent only partially observes the impact of its decisions, e.g., through the delayed acknowledgements of theserved jobs. In this paper, we provide a partially observable (PO) model that captures the load balancing decisions in parallel bufferedsystems under limited information of delayed acknowledgements. We present a simulation model for this PO system to find a loadbalancing policy in real-time using a scalable Monte Carlo tree search algorithm. We numerically show that the resulting policyoutperforms other limited information load balancing strategies such as variants of Join-the-Most-Observations and has comparableperformance to full information strategies like: Join-the-Shortest-Queue, Join-the-Shortest-Queue(d) and Shortest-Expected-Delay.Finally, we show that our approach can optimise the real-time parallel processing by using network data provided by Kaggle.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Tahir, Anam ; Alt, Bastian ; Rizk, Amr ; Koeppl, Heinz
Art des Eintrags: Bibliographie
Titel: Load Balancing in Compute Clusters with Delayed Feedback
Sprache: Englisch
Publikationsjahr: 1 Juni 2023
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Computers
Jahrgang/Volume einer Zeitschrift: 72
(Heft-)Nummer: 6
Kollation: 13 Seiten
DOI: 10.1109/TC.2022.3215907
Zugehörige Links:
Kurzbeschreibung (Abstract):

Load balancing arises as a fundamental problem, underlying the dimensioning and operation of many computing andcommunication systems, such as job routing in data center clusters, multipath communication, Big Data and queueing systems. Inessence, the decision-making agent maps each arriving job to one of the possibly heterogeneous servers while aiming at anoptimization goal such as load balancing, low average delay or low loss rate. One main difficulty in finding optimal load balancingpolicies here is that the agent only partially observes the impact of its decisions, e.g., through the delayed acknowledgements of theserved jobs. In this paper, we provide a partially observable (PO) model that captures the load balancing decisions in parallel bufferedsystems under limited information of delayed acknowledgements. We present a simulation model for this PO system to find a loadbalancing policy in real-time using a scalable Monte Carlo tree search algorithm. We numerically show that the resulting policyoutperforms other limited information load balancing strategies such as variants of Join-the-Most-Observations and has comparableperformance to full information strategies like: Join-the-Shortest-Queue, Join-the-Shortest-Queue(d) and Shortest-Expected-Delay.Finally, we show that our approach can optimise the real-time parallel processing by using network data provided by Kaggle.

Freie Schlagworte: Parallel systems, load balancing, partial observability
Zusätzliche Informationen:

Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B4: Planung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C3: Inhaltszentrische Sicht
Hinterlegungsdatum: 06 Jun 2023 11:59
Letzte Änderung: 11 Okt 2024 14:43
PPN: 510085253
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen