TU Darmstadt / ULB / TUbiblio

Robust distributed cooperative RSS-based localization for directed graphs in mixed LoS/NLoS environments

Carlino, Luca ; Jin, Di ; Muma, Michael ; Zoubir, Abdelhak M. (2019)
Robust distributed cooperative RSS-based localization for directed graphs in mixed LoS/NLoS environments.
In: EURASIP Journal on Wireless Communications and Networking, 2019, 2019
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The accurate and low-cost localization of sensors using a wireless sensor network is critically required in a wide range of today’s applications. We propose a novel, robust maximum likelihood-type method for distributed cooperative received signal strength-based localization in wireless sensor networks. To cope with mixed LoS/NLoS conditions, we model the measurements using a two-component Gaussian mixture model. The relevant channel parameters, including the reference path loss, the path loss exponent, and the variance of the measurement error, for both LoS and NLoS conditions, are assumed to be unknown deterministic parameters and are adaptively estimated. Unlike existing algorithms, the proposed method naturally takes into account the (possible) asymmetry of links between nodes. The proposed approach has a communication overhead upper-bounded by a quadratic function of the number of nodes and computational complexity scaling linearly with it. The convergence of the proposed method is guaranteed for compatible network graphs, and compatibility can be tested a priori by restating the problem as a graph coloring problem. Simulation results, carried out in comparison to a centralized benchmark algorithm, demonstrate the good overall performance and high robustness in mixed LoS/NLoS environments.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Carlino, Luca ; Jin, Di ; Muma, Michael ; Zoubir, Abdelhak M.
Art des Eintrags: Zweitveröffentlichung
Titel: Robust distributed cooperative RSS-based localization for directed graphs in mixed LoS/NLoS environments
Sprache: Englisch
Publikationsjahr: 2019
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 24 Januar 2019
Verlag: SpringerOpen
Titel der Zeitschrift, Zeitung oder Schriftenreihe: EURASIP Journal on Wireless Communications and Networking
Jahrgang/Volume einer Zeitschrift: 2019
URL / URN: https://tuprints.ulb.tu-darmstadt.de/8858
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

The accurate and low-cost localization of sensors using a wireless sensor network is critically required in a wide range of today’s applications. We propose a novel, robust maximum likelihood-type method for distributed cooperative received signal strength-based localization in wireless sensor networks. To cope with mixed LoS/NLoS conditions, we model the measurements using a two-component Gaussian mixture model. The relevant channel parameters, including the reference path loss, the path loss exponent, and the variance of the measurement error, for both LoS and NLoS conditions, are assumed to be unknown deterministic parameters and are adaptively estimated. Unlike existing algorithms, the proposed method naturally takes into account the (possible) asymmetry of links between nodes. The proposed approach has a communication overhead upper-bounded by a quadratic function of the number of nodes and computational complexity scaling linearly with it. The convergence of the proposed method is guaranteed for compatible network graphs, and compatibility can be tested a priori by restating the problem as a graph coloring problem. Simulation results, carried out in comparison to a centralized benchmark algorithm, demonstrate the good overall performance and high robustness in mixed LoS/NLoS environments.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-88583
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Hinterlegungsdatum: 12 Jul 2019 12:32
Letzte Änderung: 15 Nov 2023 10:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen