TU Darmstadt / ULB / TUbiblio

A comparative study between phase‐field and micromorphic gradient‐extended damage models for brittle fracture

Harandi, Ali ; Tabib, Majd ; Alatassi, Baker ; Brepols, Tim ; Rezaei, Shahed ; Reese, Stefanie (2023)
A comparative study between phase‐field and micromorphic gradient‐extended damage models for brittle fracture.
In: PAMM - Proceedings in Applied Mathematics & Mechanics, 2022, 22 (1)
doi: 10.26083/tuprints-00023693
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

To circumvent a mesh dependency of damage models, non‐local approaches such as phase‐field and gradient‐extended damage models have shown a good capability and attracted a lot of attention for modeling fracture. These models can predict crack nucleation, kinking, and branching. The gradient‐extended formulation proposed by [1, 2], which includes a micromorphic degree of freedom for damage, is connected to a phase‐field damage model presented in [3]; by connecting fracture parameters in brittle fracture. The latter is followed by comparing the thermodynamic consistency of these models. Despite having similarities in the formulation, gradient‐extended models differ from the standard phase‐field ones by having a damage threshold. Besides that, the local iteration exists in the gradient‐extended damage models. By employing the cohesive phase‐field model or the Angiotensin type 1 (AT1), a damage threshold appears in the formulation; by having a linear term for damage in the crack density function, see [4,5,12]. A comparison between these models is made, by taking several numerical examples and comparing their responses in a quasi‐static case. Moreover, the feasibility of different responses is addressed when one uses a standard Newton‐Raphson solver or the arc‐length one for solving a boundary value problem.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Harandi, Ali ; Tabib, Majd ; Alatassi, Baker ; Brepols, Tim ; Rezaei, Shahed ; Reese, Stefanie
Art des Eintrags: Zweitveröffentlichung
Titel: A comparative study between phase‐field and micromorphic gradient‐extended damage models for brittle fracture
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM - Proceedings in Applied Mathematics & Mechanics
Jahrgang/Volume einer Zeitschrift: 22
(Heft-)Nummer: 1
Kollation: 6 Seiten
DOI: 10.26083/tuprints-00023693
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23693
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

To circumvent a mesh dependency of damage models, non‐local approaches such as phase‐field and gradient‐extended damage models have shown a good capability and attracted a lot of attention for modeling fracture. These models can predict crack nucleation, kinking, and branching. The gradient‐extended formulation proposed by [1, 2], which includes a micromorphic degree of freedom for damage, is connected to a phase‐field damage model presented in [3]; by connecting fracture parameters in brittle fracture. The latter is followed by comparing the thermodynamic consistency of these models. Despite having similarities in the formulation, gradient‐extended models differ from the standard phase‐field ones by having a damage threshold. Besides that, the local iteration exists in the gradient‐extended damage models. By employing the cohesive phase‐field model or the Angiotensin type 1 (AT1), a damage threshold appears in the formulation; by having a linear term for damage in the crack density function, see [4,5,12]. A comparison between these models is made, by taking several numerical examples and comparing their responses in a quasi‐static case. Moreover, the feasibility of different responses is addressed when one uses a standard Newton‐Raphson solver or the arc‐length one for solving a boundary value problem.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-236934
Zusätzliche Informationen:

Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Hinterlegungsdatum: 12 Mai 2023 08:40
Letzte Änderung: 15 Mai 2023 05:12
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen